Skip to main content

Advertisement

Log in

Tumor immune subtypes distinguish tumor subclasses with clinical implications in breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

There is strong evidence that the host’s cellular immune response is linked to tumor progression, however its impact on patient outcome in breast cancer is poorly understood. The purpose of this study is to define tumor immune subtypes, focusing on cellular immune responses and investigate their prognostic effect in breast cancer patients. Our training (n = 440) and validation cohort (n = 382) consisted of all early breast cancer patients primarily treated with surgery in our center between 1985 and 1996. Tumor tissue sections were immunohistochemically stained for CD8 (CTL) and PEN5 (NK cells). Tumor expression of classical and non-classical human leukocyte antigen class I, and tumor-infiltrating Tregs were previously determined. Tumor immune subtypes were constructed based on quantification of these markers and biological rationale. High, intermediate, and low immune susceptible tumor immune subtypes were found, respectively, in 16, 63, and 20 % of patients in the training cohort and 16, 71, and 13 % in the validation cohort. The subtypes showed to be statistically significant prognostic in multivariate analyses for relapse free period (RFP) [p < 0.0001, intermediate versus high: hazard ratio (HR) 1.95; low versus high HR 2.98] and relative survival (RS) (p = 0.006, intermediate versus high HR 3.84; low versus high: HR 4.26). Validation of these outcome analyses confirmed the independent prognostic associations: RFP (p = 0.025) and RS (p = 0.040). The tumor immune subtypes that we present represent a prognostic profile with solid underlying biological rationale and with high discriminative power confirmed in an independent validation cohort. Our results emphasize the importance of tumor immune surveillance in the control of tumor development and, therefore, in determining patient prognosis. Tumor immune subtype profiling is promising for prognosis prediction and the achievement of tailored treatment for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T-cells

NK Cells:

Natural killer cells

Treg:

Regulatory T-cells

HLA:

Human leukocyte antigen

HER2:

Human epidermal growth factor receptor 2

ER:

Estrogen receptor

PR:

Progesterone receptor

TAA:

Tumor associated antigens

HR:

Hazard ratio

95 % CI:

95 % confidence interval

RS:

Relative survival

RFP:

Relapse free period

RR:

Relative risk

TNM stage:

Tumor, node, metastasis stage

uPA:

Urokinases plasminogen activator

PAI-1:

Plasminogen activator inhibitor-1

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Goldhirsch A, Wood WC, Gelber RD et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144

    Article  PubMed  CAS  Google Scholar 

  3. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

  4. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  5. Algarra I, Garcia-Lora A, Cabrera T et al (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910

    Article  PubMed  CAS  Google Scholar 

  6. Wischhusen J, Waschbisch A, Wiendl H (2007) Immune-refractory cancers and their little helpers: an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E? Semin Cancer Biol 17:459–468

    Article  PubMed  CAS  Google Scholar 

  7. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  PubMed  CAS  Google Scholar 

  8. Marin R, Ruiz-Cabello F, Pedrinaci S et al (2003) Analysis of HLA-E expression in human tumors. Immunogenetics 54:767–775

    PubMed  CAS  Google Scholar 

  9. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526

    Article  PubMed  CAS  Google Scholar 

  10. Liu F, Lang R, Zhao J et al (2011) CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130(2):645–655

    Article  PubMed  CAS  Google Scholar 

  11. Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955

    Article  PubMed  Google Scholar 

  12. de Kruijf EM, Sajet A, van Nes JG et al (2010) HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 185:7452–7459

    Article  PubMed  Google Scholar 

  13. Kleinberg L, Florenes VA, Skrede M et al (2006) Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch 449:31–39

    Article  PubMed  CAS  Google Scholar 

  14. Lefebvre S, Antoine M, Uzan S et al (2002) Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol 196:266–274

    Article  PubMed  CAS  Google Scholar 

  15. Bates GJ, Fox SB, Han C et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  16. de Kruijf EM, van Nes JG, Sajet A et al (2010) The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 16:1272–1280

    Article  PubMed  Google Scholar 

  17. Ladoire S, Arnould L, Apetoh L et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14:2413–2420

    Article  PubMed  CAS  Google Scholar 

  18. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  19. van Nes JG, de Kruijf EM, Faratian D et al (2010) COX2 expression in prognosis and in prediction to endocrine therapy in early breast cancer patients. Breast Cancer Res Treat 125(3):671–685

    PubMed  Google Scholar 

  20. Ghiringhelli F, Menard C, Terme M et al (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  PubMed  CAS  Google Scholar 

  21. DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67

    Article  PubMed  CAS  Google Scholar 

  22. Matkowski R, Gisterek I, Halon A et al (2009) The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer Res 29:2445–2451

    PubMed  CAS  Google Scholar 

  23. Gobert M, Treilleux I, Driss-Vermare N et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  PubMed  CAS  Google Scholar 

  24. Madjd Z, Spendlove I, Pinder SE et al (2005) Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer 117:248–255

    Article  PubMed  CAS  Google Scholar 

  25. Gudmundsdottir I, Gunnlaugur JJ, Sigurdsson H et al (2000) Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 89:500–505

    Article  PubMed  CAS  Google Scholar 

  26. Redondo M, Garcia J, Villar E et al (2003) Major histocompatibility complex status in breast carcinogenesis and relationship to apoptosis. Hum Pathol 34:1283–1289

    Article  PubMed  CAS  Google Scholar 

  27. Menon AG, Janssen-Van Rhijn CM, Morreau H et al (2004) Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest 84:493–501

    Article  PubMed  CAS  Google Scholar 

  28. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  29. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  PubMed  CAS  Google Scholar 

  30. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  31. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    Article  PubMed  CAS  Google Scholar 

  32. McShane LM, Altman DG, Sauerbrei W et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research support: Dutch Cancer Society (KWF 2007-3968). Furthermore, we would like to thank Johanna G.H. van Nes for her help with the database, Anita Sajet for her help with scoring the TMA and the colleagues at the research laboratory of the surgery department at the LUMC for their help and advice.

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. K. Kuppen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 234 kb)

Supplementary material 2 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Kruijf, E.M., Engels, C.C., van de Water, W. et al. Tumor immune subtypes distinguish tumor subclasses with clinical implications in breast cancer patients. Breast Cancer Res Treat 142, 355–364 (2013). https://doi.org/10.1007/s10549-013-2752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2752-2

Keywords

Navigation