Skip to main content

Advertisement

Log in

Platform comparisons for identification of breast cancers with a BRCA-like copy number profile

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Previously, we employed bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH) profiles from BRCA1 and -2 mutation carriers and sporadic tumours to construct classifiers that identify tumour samples most likely to harbour BRCA1 and -2 mutations, designated ‘BRCA1 and -2-like’ tumours, respectively. The classifiers are used in clinical genetics to evaluate unclassified variants, and patients for which no good quality germline DNA is available. Furthermore, we have shown that breast cancer patients with BRCA-like tumour aCGH profiles benefit substantially from platinum-based chemotherapy, potentially due to their inability to repair DNA double strand breaks (DSB), providing a further important clinical application for the classifiers. The BAC array technology has been replaced with oligonucleotide arrays. To continue clinical use of existing classifiers, we mapped oligonucleotide aCGH data to the BAC domain, such that the oligonucleotide profiles can be employed as in the BAC classifier. We demonstrate that segmented profiles derived from oligonucleotide aCGH show high correlation with BAC aCGH profiles. Furthermore, we trained a support vector machine score to objectify aCGH profile quality. Using the mapped oligonucleotide aCGH data, we show equivalence in classification of biologically relevant cases between BAC and oligonucleotide data. Furthermore, the predicted benefit of DSB inducing chemotherapy due to a homologous recombination defect is retained. We conclude that oligonucleotide aCGH data can be mapped to and used in the previously developed and validated BAC aCGH classifiers. Our findings suggest that it is possible to map copy number data from any other technology in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aCGH:

Array comparative genomic hybridization

BAC:

Bacterial artificial chromosome

SVM:

Support vector machine

HR:

Homologous recombination

DSB:

Double strand break

ER:

Oestrogen receptor

FEC:

5-Fluorouracil, epirubicin, cyclophosphamide

CTC:

Carboplatin, thiotepa, cyclophosphamide

HER2:

Human epidermal growth factor receptor 2

PR:

Progesterone receptor

PARP1:

Poly(ADP)ribose polymerase-1

DNA:

Deoxyribonucleic acid

References

  1. Thompson D, Easton D (2004) The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia 9(3):221–236

    Article  PubMed  Google Scholar 

  2. Venkitaraman AR (2009) Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 4:461–487

    Article  PubMed  CAS  Google Scholar 

  3. Wessels LFA, van Welsem T, Hart AAM, van’t Veer LJ, Reinders MJT, Nederlof PM (2002) Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62(23):7110–7117

    PubMed  CAS  Google Scholar 

  4. van Beers EH, van Welsem T, Wessels LFA, Li Y, Oldenburg RA, Devilee P et al (2005) Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res 65(3):822–827

    PubMed  Google Scholar 

  5. Joosse SA, van Beers EH, Tielen IHG, Horlings H, Peterse JL, Hoogerbrugge N et al (2009) Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat 116(3):479–489

    Article  PubMed  CAS  Google Scholar 

  6. Joosse SA, Brandwijk KIM, Devilee P, Wesseling J, Hogervorst FBL, Verhoef S et al (2012) Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat 132(2):379–389

    Article  PubMed  CAS  Google Scholar 

  7. Joosse SA, Brandwijk KIM, Mulder L, Wesseling J, Hannemann J, Nederlof PM (2011) Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes Chromosom Cancer 50(2):71–81

    Article  PubMed  CAS  Google Scholar 

  8. Vollebergh MA, Lips EH, Nederlof PM, Wessels LFA, Schmidt MK, van Beers EH et al (2011) An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann Oncol 22(7):1561–1570

    Article  PubMed  CAS  Google Scholar 

  9. Linn S, Lips E, Nederlof P, Wessels L, Wesseling J, van de Vijver M, et al (2011) Genomic patterns resembling BRCA-mutated breast cancers and benefit of intensified carboplatin-based chemotherapy in HER2-negative breast cancer. J Clin Oncol 29(suppl; abstr 10505)

  10. Costa JL, Meijer G, Ylstra B, Caldas C (2008) Array comparative genomic hybridization copy number profiling: a new tool for translational research in solid malignancies. Semin Radiat Oncol 18(2):98–104

    Article  PubMed  Google Scholar 

  11. Baumbusch LO, Aarøe J, Johansen FE, Hicks J, Sun H, Bruhn L et al (2008) Comparison of the Agilent, ROMA/NimbleGen and Illumina platforms for classification of copy number alterations in human breast tumors. BMC Genomics 9:379

    Article  PubMed  CAS  Google Scholar 

  12. Curtis C, Lynch AG, Dunning MJ, Spiteri I, Marioni JC, Hadfield J et al (2009) The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10:588

    Article  PubMed  Google Scholar 

  13. Hester SD, Reid L, Nowak N, Jones WD, Parker JS, Knudtson K et al (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Technol 20(2):135–151

    Google Scholar 

  14. Wicker N, Carles A, Mills IG, Wolf M, Veerakumarasivam A, Edgren H et al (2007) A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH. BMC Genomics 8:84

    Article  PubMed  Google Scholar 

  15. Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP et al (2012) CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosom Cancer 51(4):344–352

    Article  PubMed  CAS  Google Scholar 

  16. Rodenhuis S, Bontenbal M, Beex LVAM, Wagstaff J, Richel DJ, Nooij MA et al (2003) High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 349(1):7–16

    Article  PubMed  CAS  Google Scholar 

  17. R Development Core Team. R: a language and environment for statistical computing (Internet) (2012) R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 7 May 2013

  18. Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6):657–663

    Article  PubMed  CAS  Google Scholar 

  19. Picard F, Lebarbier E, Hoebeke M, Rigaill G, Thiam B, Robin S (2011) Joint segmentation, calling, and normalization of multiple CGH profiles. Biostatistics 12(3):413–428

    Article  PubMed  Google Scholar 

  20. Zhang NR, Siegmund DO (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1):22–32

    Article  PubMed  CAS  Google Scholar 

  21. Duin R, Juszczak P, Paclik P, Pekalska E, de Ridder D (2007) A Matlab toolbox for pattern recognition. Delft University of Technology, Delft

    Google Scholar 

  22. Coombes KR (2012) ClassDiscovery: classes and methods for “class discovery” with microarrays or proteomics (Internet). http://bioinformatics.mdanderson.org/main/OOMPA:Overview. Accessed 7 May 2013

  23. De Ronde J, Klijn C, Velds A (2010) KCsmart: multi sample aCGH analysis package using kernel convolution. BMC Res Notes 11(3):298

    Article  Google Scholar 

  24. Therneau T (2012) A Package for survival analysis in S. R package version 2.37-2. http://CRAN.R-project.org/package=survival. Accessed 7 May 2013

  25. Stevenson M (2012) epiR: an R package for the analysis of epidemiological data (Internet). http://CRAN.R-project.org/package=epiR. Accessed 7 May 2013

  26. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99(10):6567–6572

    Article  PubMed  CAS  Google Scholar 

  27. Weigelt B, Mackay A, A’hern R, Natrajan R, Tan DSP, Dowsett M et al (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11(4):339–349

    Article  PubMed  CAS  Google Scholar 

  28. Mackay A, Weigelt B, Grigoriadis A, Kreike B, Natrajan R, A’Hern R et al (2011) Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst 103(8):662–673

    Article  PubMed  CAS  Google Scholar 

  29. Colombo P-E, Milanezi F, Weigelt B, Reis-Filho JS (2011) Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 13(3):212

    Article  PubMed  Google Scholar 

  30. Jong K, Marchiori E, van der Vaart A, Chin S-F, Carvalho B, Tijssen M et al (2007) Cross-platform array comparative genomic hybridization meta-analysis separates hematopoietic and mesenchymal from epithelial tumors. Oncogene 26(10):1499–1506

    Article  PubMed  CAS  Google Scholar 

  31. Sargent DJ, Conley BA, Allegra C, Collette L (2005) Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 23(9):2020–2027

    Article  PubMed  Google Scholar 

  32. Vollebergh MA, Jonkers J, Linn SC (2012) Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci 69(2):223–245

    Article  PubMed  CAS  Google Scholar 

  33. Beelen K, Zwart W, Linn SC (2012) Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat Rev Clin Oncol 9(9):529–541

    Article  PubMed  CAS  Google Scholar 

  34. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

  35. Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, Bickerdike M et al (2010) Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res 38(14):e151

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Marieke Vollebergh for discussion and Tesa Severson for critically reading the article. This study was carried out within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project Breast CARE grant 030-104, and Life Sciences Center Amsterdam (LSCA) Validation fund.

Conflict of interest

SC Linn and PM Nederlof are named inventors on a patent application for the BRCA1 and -2-like array comparative genomics hybridization classifiers. The other authors do not disclose any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra M. Nederlof.

Additional information

Philip C. Schouten and Ewald van Dyk contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schouten, P.C., van Dyk, E., Braaf, L.M. et al. Platform comparisons for identification of breast cancers with a BRCA-like copy number profile. Breast Cancer Res Treat 139, 317–327 (2013). https://doi.org/10.1007/s10549-013-2558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2558-2

Keywords

Navigation