Skip to main content

Advertisement

Log in

Effect of selumetinib on the growth of anastrozole-resistant tumors

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Despite significant improvement in the treatment outcome of hormone responsive postmenopausal breast cancer, some patients eventually acquire resistance to aromatase inhibitors (AIs). Using our MCF-7Ca xenograft model, we observed that although AIs such as anastrozole initially inhibit tumor growth effectively, tumors eventually began to grow. Our previous data show that anastrozole-resistant tumors upregulate growth factor receptor pathways as they adapt to grow in the low estrogen environment. Therefore, in the current study, we investigated the effect of inhibiting the growth factor receptor pathways with a MEK-1/2 inhibitor selumetinib (AZD6244, ARRY-142866). We treated the mice with anastrozole-resistant tumors with selumetinib alone or in combination with anastrozole. MCF-7Ca cells were inoculated sc into ovariectomized athymic nude mice supplemented throughout the experiment with androstenedione (100 μg/day), the substrate for aromatase conversion to estrogen. Once the tumors reached a measurable size (~300 mm3), the mice were treated with anastrozole (200 μg/day), supplemented with androstenedione (Δ4A). The tumors in the anastrozole group doubled in volume after 6 weeks, at which time the animals were regrouped to receive the following treatments: (i) anastrozole, (ii) anastrozole withdrawal (Δ4A alone), (iii) selumetinib (25 mg/kg/d, bid, po), and (iv) selumetinib + anastrozole, (n = 10 mice/group). The treatments were given for 6 weeks (till week 12) and then the mice were euthanized, the tumors were collected and analyzed. The tumors of mice treated with selumetinib + anastrozole had significantly lower growth rates than those treated with single agents (p = 0.008). Western blot analysis of the tumors showed that treatment with anastrozole resulted in upregulation of proteins in the growth factor receptor cascade such as p-mTOR, pAkt, pMEK, and pMAPK. This was accompanied by downregulation of ERα protein, consistent with previous findings. The treatment of mice with selumetinib resulted in downregulation of activated MAPK, along with p-mTOR, which likely resulted in upregulation of ERα. Our results suggest that inhibition of the growth factor receptor pathway with selumetinib can reverse anastrozole resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ERα:

Estrogen receptor alpha

CYP-19:

Aromatase

E2 :

17β-Estradiol

Δ4A:

3,17-Androstenedione

References

  1. Goss PE, Muss HB, Ingle JN, Whelan TJ, Wu M (2008) Extended adjuvant endocrine therapy in breast cancer: current status and future directions. Clin breast cancer 8:411–417. doi:10.3816/CBC.2008.n.049

    Article  PubMed  CAS  Google Scholar 

  2. Swain SM (2005) Aromatase inhibitors–a triumph of translational oncology. N Engl J Med 353:2807–2809

    Article  PubMed  CAS  Google Scholar 

  3. Baum M (2002) The ATAC (Arimidex, Tamoxifen, Alone or in Combination) adjuvant breast cancer trial in postmenopausal patients: factors influencing the success of patient recruitment. Eur J Cancer 38:1984–1986

    Article  PubMed  CAS  Google Scholar 

  4. Buzdar A (2003) Anastrozole as adjuvant therapy for early-stage breast cancer: implications of the ATAC trial. Clin breast cancer 4(Suppl 1):S42–S48

    Article  PubMed  CAS  Google Scholar 

  5. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Tu D, Shepherd LE, Pritchard KI, Livingston RB, Davidson NE, Norton L, Perez EA, Abrams JS, Cameron DA, Palmer MJ, Pater JL (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97:1262–1271

    Article  PubMed  CAS  Google Scholar 

  6. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Tu D, Shepherd LE, Pritchard KI, Livingston RB, Davidson NE, Norton L, Perez EA, Abrams JS, Therasse P, Palmer MJ, Pater JL (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349:1793–1802

    Article  PubMed  CAS  Google Scholar 

  7. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A (2003) Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21:2101–2109

    Article  PubMed  CAS  Google Scholar 

  8. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Janicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Lassus M, Verbeek JA, Staffler B, Chaudri-Ross HA, Dugan M (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19:2596–2606

    PubMed  CAS  Google Scholar 

  9. Brodie A, Jelovac D, Long BJ (2003) Predictions from a preclinical model: studies of aromatase inhibitors and antiestrogens. Clin Cancer Res 9:455S–459S

    PubMed  CAS  Google Scholar 

  10. Brodie A, Jelovac D, Macedo L, Sabnis G, Tilghman S, Goloubeva O (2005) Therapeutic observations in MCF-7 aromatase xenografts. Clin Cancer Res 11:884s–888s

    PubMed  CAS  Google Scholar 

  11. Jelovac D, Macedo L, Handratta V, Long BJ, Goloubeva OG, Ingle JN, Brodie AM (2004) Effects of exemestane and tamoxifen in a postmenopausal breast cancer model. Clin Cancer Res 10:7375–7381

    Article  PubMed  CAS  Google Scholar 

  12. Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, Goloubeva OG, Brodie AM (2004) Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst 96:456–465

    Article  PubMed  CAS  Google Scholar 

  13. Brodie AH, Mouridsen HT (2003) Applicability of the intratumor aromatase preclinical model to predict clinical trial results with endocrine therapy. Am J Clin Oncol 26:S17–S26

    Article  PubMed  Google Scholar 

  14. Yue W, Brodie A (1993) MCF-7 human breast carcinomas in nude mice as a model for evaluating aromatase inhibitors. J Steroid Biochem Mol Biol 44:671–673

    Article  PubMed  CAS  Google Scholar 

  15. Yue W, Zhou D, Chen S, Brodie A (1994) A new nude mouse model for postmenopausal breast cancer using MCF-7 cells transfected with the human aromatase gene. Cancer Res 54:5092–5095

    PubMed  CAS  Google Scholar 

  16. Jelovac D, Macedo L, Goloubeva OG, Handratta V, Brodie AM (2005) Additive antitumor effect of aromatase inhibitor letrozole and antiestrogen fulvestrant in a postmenopausal breast cancer model. Cancer Res 65:5439–5444

    Article  PubMed  CAS  Google Scholar 

  17. Macedo LF, Sabnis GJ, Goloubeva OG, Brodie A (2008) Combination of anastrozole with fulvestrant in the intratumoral aromatase xenograft model. Cancer Res 68:3516–3522

    Article  PubMed  CAS  Google Scholar 

  18. Jelovac D, Sabnis G, Long BJ, Macedo L, Goloubeva OG, Brodie AM (2005) Activation of mitogen-activated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole. Cancer Res 65:5380–5389

    Article  PubMed  CAS  Google Scholar 

  19. Sabnis G, Goloubeva O, Gilani R, Macedo L, Brodie A (2010) Sensitivity to the aromatase inhibitor letrozole is prolonged after a “break” in treatment. Mol Cancer Ther 9:46–56

    Article  PubMed  CAS  Google Scholar 

  20. Sabnis GJ, Jelovac D, Long B, Brodie A (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65:3903–3910

    Article  PubMed  CAS  Google Scholar 

  21. Sabnis GJ, Kazi AA, Goloubeva O, Zhang B, Schech A, Shah P, Brodie A (2012) Effect of selumetinib and AZD8055 on the growth of anastrozole resistant tumors. AACR Meeting Abstracts Abstract 2919

  22. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD (2007) AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 6:2209–2219. doi:10.1158/1535-7163.MCT-07-0231

    Article  PubMed  CAS  Google Scholar 

  23. Huynh H, Soo KC, Chow PK, Tran E (2007) Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther 6:138–146. doi:10.1158/1535-7163.MCT-06-0436

    Article  PubMed  CAS  Google Scholar 

  24. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, Marlow A, Hurley B, Lyssikatos J, Lee PA, Winkler JD, Koch K, Wallace E (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13:1576–1583. doi:10.1158/1078-0432.CCR-06-1150

    Article  PubMed  CAS  Google Scholar 

  25. Chung EJ, Brown AP, Asano H, Mandler M, Burgan WE, Carter D, Camphausen K, Citrin D (2009) In vitro and in vivo radiosensitization with AZD6244 (ARRY-142886), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinase. Clin Cancer Res 15:3050–3057. doi:10.1158/1078-0432.CCR-08-2954

    Article  PubMed  CAS  Google Scholar 

  26. Zhou DJ, Pompon D, Chen SA (1990) Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res 50:6949–6954

    PubMed  CAS  Google Scholar 

  27. Macedo LF, Guo Z, Tilghman SL, Sabnis GJ, Qiu Y, Brodie A (2006) Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res 66:7775–7782

    Article  PubMed  CAS  Google Scholar 

  28. Sabnis G, Schayowitz A, Goloubeva O, Macedo L, Brodie A (2009) Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res 69:1416–1428

    Article  PubMed  CAS  Google Scholar 

  29. Long BJ, Tilghman SL, Yue W, Thiantanawat A, Grigoryev DN, Brodie AM (1998) The steroidal antiestrogen ICI 182,780 is an inhibitor of cellular aromatase activity. J Steroid Biochem Mol Biol 67:293–304

    Article  PubMed  CAS  Google Scholar 

  30. Sabnis GJ, Macedo LF, Goloubeva O, Schayowitz A, Brodie AM (2008) Stopping treatment can reverse acquired resistance to letrozole. Cancer Res 68:4518–4524

    Article  PubMed  CAS  Google Scholar 

  31. Sabnis GJ, Macedo L, Goloubeva O, Schayowitz A, Zhu Y, Brodie A (2008) Toremifene-atamestane; alone or in combination: predictions from the preclinical intratumoral aromatase model. J Steroid Biochem Mol Biol 108:1–7

    Article  PubMed  CAS  Google Scholar 

  32. Osborne CK, Shou J, Massarweh S, Schiff R (2005) Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11:865s–870s

    PubMed  CAS  Google Scholar 

  33. Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80:239–256

    Article  PubMed  CAS  Google Scholar 

  34. Santen RJ, Song RX, Zhang Z, Kumar R, Jeng MH, Masamura S, Lawrence J Jr, MacMahon LP, Yue W, Berstein L (2005) Adaptive hypersensitivity to estrogen: mechanisms and clinical relevance to aromatase inhibitor therapy in breast cancer treatment. J Steroid Biochem Mol Biol 95:155–165

    Article  PubMed  CAS  Google Scholar 

  35. Yue W, Wang JP, Conaway MR, Li Y, Santen RJ (2003) Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol 86:265–274

    Article  PubMed  CAS  Google Scholar 

  36. Smith CL (1998) Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol Reprod 58:627–632

    Article  PubMed  CAS  Google Scholar 

  37. Miller TW, Hennessy BT, Gonzalez-Angulo AM, Fox EM, Mills GB, Chen H, Higham C, Garcia-Echeverria C, Shyr Y, Arteaga CL (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Investig 120:2406–2413. doi:10.1172/JCI41680

    Article  PubMed  CAS  Google Scholar 

  38. Santen RJ, Song RX, Masamura S, Yue W, Fan P, Sogon T, Hayashi S, Nakachi K, Eguchi H (2008) Adaptation to estradiol deprivation causes up-regulation of growth factor pathways and hypersensitivity to estradiol in breast cancer cells. Adv Exp Med Biol 630:19–34

    Article  PubMed  CAS  Google Scholar 

  39. Sabnis G, Goloubeva O, Jelovac D, Schayowitz A, Brodie A (2007) Inhibition of the phosphatidylinositol 3-kinase/akt pathway improves response of long-term estrogen-deprived breast cancer xenografts to antiestrogens. Clin Cancer Res 13:2751–2757

    Article  PubMed  CAS  Google Scholar 

  40. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Investig 118:3051–3064. doi:10.1172/JCI34764

    PubMed  CAS  Google Scholar 

  41. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S, Gili M, Russillo M, Parra JL, Singh S, Arribas J, Rosen N, Baselga J (2011) PI3 K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30:2547–2557. doi:10.1038/onc.2010.626

    Article  PubMed  CAS  Google Scholar 

  42. (2012) Everolimus Approved for HR-Positive Breast Cancer. Cancer discovery 2:756. doi: 10.1158/2159-8290.CD-NB2012-083

  43. Beaver JA, Park BH (2012) The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future oncology 8:651–657. doi:10.2217/fon.12.49

    Article  PubMed  CAS  Google Scholar 

  44. Gupta M, Ansell SM, Novak AJ, Kumar S, Kaufmann SH, Witzig TE (2009) Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood 114:2926–2935. doi:10.1182/blood-2009-05-220889

    Article  PubMed  CAS  Google Scholar 

  45. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508. doi:10.1158/0008-5472.CAN-05-2925

    Article  PubMed  Google Scholar 

  46. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940. doi:10.1038/sj.onc.1209990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to G Sabnis (KG10037 from Susan G Komen) and to A. Brodie (CA-62483 from NCI/NIH and SAC100010 from Susan G Komen). Astra-Zeneca also provided financial support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Brodie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabnis, G.J., Kazi, A., Golubeva, O. et al. Effect of selumetinib on the growth of anastrozole-resistant tumors. Breast Cancer Res Treat 138, 699–708 (2013). https://doi.org/10.1007/s10549-013-2474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2474-5

Keywords

Navigation