Skip to main content

Advertisement

Log in

Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In epithelial-to-mesenchymal transition (EMT) epithelial cancer cells achieve mesenchymal features, essentially helping them to metastasize. There is some evidence that EMT could be increased in triple-negative (TNBC) or basal-like breast cancers, although more precise mechanisms considering e.g. EMT-regulating transcription factors are largely unknown. We assessed immunohistochemically vimentin (separately in in situ areas and in invasive cells) as an indicator of EMT, and also EMT-regulating transcription factors zeb1 (separately in stroma and tumour) and Sip1 (in nuclei and cytoplasm) in histological samples of 231 women with local or locally advanced invasive breast cancer. 51.1 % of patients had TNBC and 48.9 % oestrogen and progesterone receptor-positive and HER2 negative breast cancer. Basal-like breast cancers were defined as TNBC that also expressed epidermal growth factor receptor EGFR and/or cytokeratin 5/6. Vimentin expression in invasive cells was higher in TNBCs (p = 9 × 10−12) compared to non-TNBC tumours. Vimentin (p = 2 × 10−6), nuclear Sip1 (p = 0.035) and zeb1 in stroma (p = 0.013) were overexpressed in basal-like cancers compared to non-basal-like TNBCs. In non-TNBC group findings between studied markers and clinicopathological factors were rare. However, in TNBC cases, vimentin expression in invasive cells associated with poor differentiation (p = 0.00007), zeb1 expression in cancer cells with higher grade (p = 0.002), vascular invasion (p = 0.036) and larger T-class (p = 0.027), whereas stromal zeb1 associated with lymphatic vessel invasion (p = 0.036) and vascular invasion (p = 0.039). High nuclear Sip1 expression was prognostic for poor disease-free survival (p = 0.002) in the whole cohort. The current results emphasize the increased role of EMT in TNBC and especially in basal-like breast cancers. These observations also support the role of studied parameters in tumour progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Metzger-Filho O, Tutt A, de Azambuja E et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:1879–1987

    Article  PubMed  CAS  Google Scholar 

  2. Irshad S, Ellis P, Tutt A (2011) Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol 23:566–577

    Article  PubMed  CAS  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  PubMed  CAS  Google Scholar 

  4. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997

    Article  PubMed  Google Scholar 

  5. Foroni C, Broggini M, Generali D, Damia G (2012) Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 38:689–697

    Article  PubMed  CAS  Google Scholar 

  6. Jeong H, Ryu YJ, An J, Lee Y, Kim A (2012) Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60:E87–E95

    Article  PubMed  Google Scholar 

  7. Savagner P (2010) The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol Suppl 7:vii89–vii92

    Article  Google Scholar 

  8. Cattoretti G, Andreola S, Clemente C, D’Amato L, Rilke F (1988) Vimentin and p53 expression on epidermal growth factor receptor-positive, oestrogen receptor-negative breast carcinomas. Br J Cancer 57:353–357

    Article  PubMed  CAS  Google Scholar 

  9. Grabitz AL, Duncan MK (2012) Focus on molecules: smad interacting protein 1 (Sip1, ZEB2, ZFHX1B). Exp Eye Res 101:105–106

    Article  PubMed  CAS  Google Scholar 

  10. Wakamatsu N, Yamada Y, Yamada K et al (2001) Mutations in Sip1, encoding smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370

    Article  PubMed  CAS  Google Scholar 

  11. Vandewalle C, Comijn J, De Craene B et al (2005) Sip1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33:6566–6578

    Article  PubMed  CAS  Google Scholar 

  12. Remacle JE, Kraft H, Lerchner W et al (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18:5073–5084

    Article  PubMed  CAS  Google Scholar 

  13. Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 22:2443–2452

    Article  PubMed  CAS  Google Scholar 

  14. Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66:773–787

    Article  PubMed  CAS  Google Scholar 

  15. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G (2012) Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 69:2527–2541

    Article  PubMed  CAS  Google Scholar 

  16. Kim T, Veronese A, Pichiorri F, Lee TJ et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting zeb1 and ZEB2. J Exp Med 208:875–883

    Article  PubMed  CAS  Google Scholar 

  17. Takkunen M, Grenman R, Hukkanen M, Korhonen M, García de Herreros A, Virtanen I (2006) Snail-dependent and -independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 54:1263–1275

    Article  PubMed  CAS  Google Scholar 

  18. Spaderna S, Schmalhofer O, Wahlbuhl M et al (2008) The transcriptional repressor zeb1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544

    Article  PubMed  CAS  Google Scholar 

  19. Merikallio H, Kaarteenaho R, Pääkkö P, Lehtonen S, Hirvikoski P, Mäkitaro R, Harju T, Soini Y (2011) Zeb1 and twist are more commonly expressed in metastatic than primary lung tumours and show inverse associations with claudins. J Clin Pathol 64:136–140

    Article  PubMed  Google Scholar 

  20. Jia B, Liu H, Kong Q, Li B (2012) Overexpression of zeb1 associated with metastasis and invasion in patients with gastric carcinoma. Mol Cell Biochem 366:223–229

    Article  PubMed  CAS  Google Scholar 

  21. Zhou YM, Cao L, Li B, Zhang RX, Sui CJ, Yin ZF, Yang JM (2012) Clinicopathological significance of zeb1 protein in patients with Hepatocellular Carcinoma. Ann Surg Oncol 19:1700–1706

    Article  PubMed  Google Scholar 

  22. Lemma S, Karihtala P, Haapasaari KM et al (2012) Biological roles and prognostic values of the EMT-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology (in press)

  23. Tavassoli FA, Devilee P (eds) (2003) World Health Organization Classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon, pp 13–59, 63–73

  24. Karihtala P, Mäntyniemi A, Kang SW, Kinnula VL, Soini Y (2003) Peroxiredoxins in breast carcinoma. Clin Cancer Res 9:3418–3424

    PubMed  CAS  Google Scholar 

  25. Karihtala P, Kauppila S, Soini Y, Jukkola-Vuorinen A (2011) Oxidative stress and counteracting mechanisms in hormone receptor positive, triple-negative and basal-like breast carcinomas. BMC Cancer 11:262

    Article  PubMed  Google Scholar 

  26. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  28. Al Saleh S, Al Mulla F, Luqmani YA (2011) Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS ONE 6:e20610

    Article  PubMed  CAS  Google Scholar 

  29. Kusinska RU, Kordek R, Pluciennik E, Bednarek AK, Piekarski JH, Potemski P (2009) Does vimentin help to delineate the so-called ‘basal type breast cancer’? J Exp Clin Cancer Res 28:118

    Article  PubMed  Google Scholar 

  30. Chen MH, Yip GW, Tse GM et al (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21:1183–1191

    Article  PubMed  CAS  Google Scholar 

  31. Domagala W, Lasota J, Bartkowiak J, Weber K, Osborn M (1990) Vimentinis preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction. Am J Pathol 136:219–227

    PubMed  CAS  Google Scholar 

  32. Liu T, Zhang X, Shang M, Zhang Y, Xia B, Niu M, Liu Y, Pang D (2012) Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol. doi:10.1002/jso.23240

    Google Scholar 

  33. Greenberg S, Rugo HS (2010) Challenging clinical scenarios: treatment of patients with triple-negative or basal-like metastatic breast cancer. Clin Breast Cancer Suppl 2:S20–S29

    Article  Google Scholar 

  34. Bindels S, Mestdagt M, Vandewalle C et al (2006) Regulation of vimentin by Sip1 in human epithelial breast tumor cells. Oncogene 25:4975–4985

    Article  PubMed  CAS  Google Scholar 

  35. Miura N, Yano T, Shoji F et al (2009) Clinicopathological significance of Sip1-associated epithelial mesenchymal transition in non-small cell lung cancer progression. Anticancer Res 29:4099–4106

    PubMed  Google Scholar 

  36. Gemmill RM, Roche J, Potiron VA et al (2011) Zeb1-responsive genes in non-small cell lung cancer. Cancer Lett 300:66–78

    Article  PubMed  CAS  Google Scholar 

  37. Soini Y, Tuhkanen H, Sironen R, Virtanen I, Kataja V, Auvinen P, Mannermaa A, Kosma VM (2011) Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer 16(11):73

    Article  Google Scholar 

  38. Geradts J, de Herreros AG, Su Z, Burchette J, Broadwater G, Bachelder RE (2011) Nuclear Snail1 and nuclear zeb1 protein expression in invasive and intraductal human breast carcinomas. Hum Pathol 42:1125–1131

    Article  PubMed  CAS  Google Scholar 

  39. Kuroda H, Nakai M, Ohnisi K, Ishida T, Kuroda M, Itoyama S (2010) Vascular invasion in triple-negative carcinoma of the breast identified by endothelial lymphatic and blood vessel markers. Int J Surg Pathol 18:324–329

    PubMed  Google Scholar 

  40. Liu Z, Qi L, Li H, Gao J, Leng X (2012) Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci 103:813–820

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thelma Mäkikyrö foundation (PK), The Orion-Farmos Foundation (PK), The Cancer Society of Finland (PK), The Finnish Anti-tuberculosis Association (YS), Special Government Funding of Kuopio University Hospital (PA) and Cancer Center of University of Eastern Finland (PA, YS) and The Finnish Cultural Foundation are acknowledged for their financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peeter Karihtala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karihtala, P., Auvinen, P., Kauppila, S. et al. Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype. Breast Cancer Res Treat 138, 81–90 (2013). https://doi.org/10.1007/s10549-013-2442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2442-0

Keywords

Navigation