Skip to main content

Advertisement

Log in

High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

ATP-binding cassette (ABC) transporters are membrane proteins that efflux various compounds from cells, including chemotherapeutic agents, and are known to affect multidrug resistance. Recent reports disagree on whether ABCC11 is a risk factor for breast tumorigenesis, but its expression in breast cancer is poorly investigated. We hypothesized that both frequency and expression levels of ABC transporters in breast tumors would vary by cancer subtype, and be associated with prognosis. Here, we constructed a tissue microarray breast tumor samples from 281 patients, and analyzed expressions of ABCB1, ABCC1, ABCC11, and ABCG2 immunohistochemically. Breast cancer subtypes were determined by immunohistochemistry of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2). Protein expression was correlated to clinicopathological characteristics, clinical follow-up, and pathological complete response to neoadjuvant chemotherapy. The tissue microarray comprised 191 luminal A (68.0 %), 17 luminal B (6.0 %), 27 HER2 (9.6 %), and 46 triple-negative (16.4 %) samples. ABCC1 and ABCC11 expressions were associated with significantly shorter disease-free survival (P = 0.027 and P = 0.003, respectively). ABCC1, ABCC11, and ABCG2, but not ABCB1, were expressed significantly more, and more frequently, in aggressive subtypes. Patients with HER2+ and triple-negative tumor subtypes that expressed high levels of ABCC11 had significantly worse disease-free survival (P = 0.017 and P < 0.001, respectively). We have shown, for the first time, that ABCC1, ABCC11, and ABCG2 are highly expressed in aggressive breast cancer subtypes, and that tumor ABCC11 expression is associated with poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi:10.1093/annonc/mdr304

    Article  PubMed  CAS  Google Scholar 

  2. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  3. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. doi:10.1158/1078-0432.ccr-06-1109

    Article  PubMed  CAS  Google Scholar 

  4. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685. doi:10.1158/1078-0432.ccr-04-2421

    Article  PubMed  CAS  Google Scholar 

  5. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279. doi:10.1371/journal.pmed.1000279

    Article  PubMed  Google Scholar 

  6. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed  Google Scholar 

  7. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi:10.1073/pnas.0932692100

    Article  PubMed  Google Scholar 

  8. Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9. doi:10.1007/s10911-009-9109-9

    Article  PubMed  Google Scholar 

  9. Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, Reinhold W, Guo Y, Kruh GD, Reimers M, Weinstein JN, Gottesman MM (2004) Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6(2):129–137. doi:10.1016/j.ccr.2004.06.026

    Article  PubMed  CAS  Google Scholar 

  10. Leonessa F, Clarke R (2003) ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 10(1):43–73

    Article  PubMed  CAS  Google Scholar 

  11. Yoshiura K, Kinoshita A, Ishida T, Ninokata A, Ishikawa T, Kaname T, Bannai M, Tokunaga K, Sonoda S, Komaki R, Ihara M, Saenko VA, Alipov GK, Sekine I, Komatsu K, Takahashi H, Nakashima M, Sosonkina N, Mapendano CK, Ghadami M, Nomura M, Liang DS, Miwa N, Kim DK, Garidkhuu A, Natsume N, Ohta T, Tomita H, Kaneko A, Kikuchi M, Russomando G, Hirayama K, Ishibashi M, Takahashi A, Saitou N, Murray JC, Saito S, Nakamura Y, Niikawa N (2006) A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 38(3):324–330. doi:10.1038/ng1733

    Article  PubMed  CAS  Google Scholar 

  12. Ota I, Sakurai A, Toyoda Y, Morita S, Sasaki T, Chishima T, Yamakado M, Kawai Y, Ishidao T, Lezhava A, Yoshiura K, Togo S, Hayashizaki Y, Ishikawa T, Endo I, Shimada H (2010) Association between breast cancer risk and the wild-type allele of human ABC transporter ABCC11. Anticancer Res 30(12):5189–5194

    PubMed  CAS  Google Scholar 

  13. Beesley J, Johnatty SE, Chen X, Spurdle AB, Peterlongo P, Barile M, Pensotti V, Manoukian S, Radice P, Chenevix-Trench G (2011) No evidence for an association between the earwax-associated polymorphism in ABCC11 and breast cancer risk in Caucasian women. Breast Cancer Res Treat 126(1):235–239. doi:10.1007/s10549-010-1292-2

    Article  PubMed  Google Scholar 

  14. Lang T, Justenhoven C, Winter S, Baisch C, Hamann U, Harth V, Ko YD, Rabstein S, Spickenheuer A, Pesch B, Bruning T, Schwab M, Brauch H (2011) The earwax-associated SNP c.538G>A (G180R) in ABCC11 is not associated with breast cancer risk in Europeans. Breast Cancer Res Treat 129(3):993–999. doi:10.1007/s10549-011-1613-0

    Article  PubMed  Google Scholar 

  15. Toyoda Y, Sakurai A, Mitani Y, Nakashima M, Yoshiura K, Nakagawa H, Sakai Y, Ota I, Lezhava A, Hayashizaki Y, Niikawa N, Ishikawa T (2009) Earwax, osmidrosis, and breast cancer: why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J 23(6):2001–2013. doi:10.1096/fj.09-129098

    Article  PubMed  CAS  Google Scholar 

  16. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi:10.1001/jama.295.21.2492

    Article  PubMed  CAS  Google Scholar 

  17. Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD (2003) MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J Biol Chem 278(32):29509–29514. doi:10.1074/jbc.M304059200

    Article  PubMed  CAS  Google Scholar 

  18. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424

    Article  PubMed  CAS  Google Scholar 

  19. Toi M, Ohashi Y, Seow A, Moriya T, Tse G, Sasano H, Park BW, Chow LW, Laudico AV, Yip CH, Ueno E, Ishiguro H, Bando H (2010) The Breast Cancer Working Group presentation was divided into three sections: the epidemiology, pathology and treatment of breast cancer. Jpn J Clin Oncol 40(Suppl 1):i13–i18. doi:10.1093/jjco/hyq122

    Article  PubMed  Google Scholar 

  20. Xiang L, Su P, Xia S, Liu Z, Wang Y, Gao P, Zhou G (2011) ABCG2 is associated with HER-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Diagn Pathol 6:90. doi:10.1186/1746-1596-6-90

    Article  PubMed  Google Scholar 

  21. Bera TK, Lee S, Salvatore G, Lee B, Pastan I (2001) MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med 7(8):509–516

    PubMed  CAS  Google Scholar 

  22. Honorat M, Mesnier A, Vendrell J, Guitton J, Bieche I, Lidereau R, Kruh GD, Dumontet C, Cohen P, Payen L (2008) ABCC11 expression is regulated by estrogen in MCF7 cells, correlated with estrogen receptor alpha expression in postmenopausal breast tumors and overexpressed in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer 15(1):125–138. doi:10.1677/erc-07-0189

    Article  PubMed  CAS  Google Scholar 

  23. Sosonkina N, Nakashima M, Ohta T, Niikawa N, Starenki D (2011) Down-regulation of ABCC11 protein (MRP8) in human breast cancer. Exp Oncol 33(1):42–46

    PubMed  CAS  Google Scholar 

  24. Oguri T, Bessho Y, Achiwa H, Ozasa H, Maeno K, Maeda H, Sato S, Ueda R (2007) MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 6(1):122–127. doi:10.1158/1535-7163.mct-06-0529

    Article  PubMed  CAS  Google Scholar 

  25. Toyoda Y, Ishikawa T (2010) Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem 10(8):617–624

    Article  PubMed  CAS  Google Scholar 

  26. Park S, Shimizu C, Shimoyama T, Takeda M, Ando M, Kohno T, Katsumata N, Kang YK, Nishio K, Fujiwara Y (2006) Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 99(1):9–17. doi:10.1007/s10549-006-9175-2

    Article  PubMed  CAS  Google Scholar 

  27. Takabe K, Kim RH, Allegood JC, Mitra P, Ramachandran S, Nagahashi M, Harikumar KB, Hait NC, Milstien S, Spiegel S (2010) Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J Biol Chem 285(14):10477–10486. doi:10.1074/jbc.M109.064162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Harry D. Bear (Virginia Commonwealth University) for his critical review and valuable input to improve this manuscript. Kazuaki Takabe is supported by the US National Institutes of Health (R01CA160688, K12HD055881) and a Susan G. Komen for the Cure Investigator Initiated Research Grant and Career Catalyst Research Grant (KG090510).

Ethical standards

This study was approved by the Institutional Review Board of Yokohama City University, Kanagawa, Japan.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, A., Ishikawa, T., Ota, I. et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat 137, 773–782 (2013). https://doi.org/10.1007/s10549-012-2398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2398-5

Keywords

Navigation