Skip to main content

Advertisement

Log in

Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MBC:

Mucinous breast cancer

PR:

Progesterone receptor

ER:

Estrogen receptor

AR:

Androgen receptor

GR:

Glucocorticoid receptor

ILC:

Invasive lobular carcinoma

IDC:

Invasive ductal carcinoma

IDC NOS:

Invasive ductal carcinoma not otherwise specified

MBCPure :

Pure mucinous breast cancer

MBCMixed :

Mixed mucinous breast cancer

References

  1. Tavassoli FA, Devilee P (eds) (2003) World Health Organization Classification of Tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon

    Google Scholar 

  2. Henson D, Tarone R (1979) A study of lobular carcinoma of the breast based on the third national cancer survey in The United States of America. Tumori 65(2):133–142

    PubMed  CAS  Google Scholar 

  3. Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW (1982) Infiltrating lobular carcinoma of the breast. Histopathology 6(2):149–161

    Article  PubMed  CAS  Google Scholar 

  4. Martinez V, Azzopardi JG (1979) Invasive lobular carcinoma of the breast: incidence and variants. Histopathology 3(6):467–488

    Article  PubMed  CAS  Google Scholar 

  5. Steinbrecher JS, Silverberg SG (1976) Signet-ring cell carcinoma of the breast. The mucinous variant of infiltrating lobular carcinoma? Cancer 37(2):828–840

    Article  PubMed  CAS  Google Scholar 

  6. Li CI, Anderson BO, Porter P, Holt SK, Daling JR, Moe RE (2000) Changing incidence rate of invasive lobular breast carcinoma among older women. Cancer 88(11):2561–2569

    Article  PubMed  CAS  Google Scholar 

  7. Li CI, Weiss NS, Stanford JL, Daling JR (2000) Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. Cancer 88(11):2570–2577

    Article  PubMed  CAS  Google Scholar 

  8. O’Connor IF, Shembekar MV, Shousha S (1998) Breast carcinoma developing in patients on hormone replacement therapy: a histological and immunohistological study. J Clin Pathol 51(12):935–938

    Article  PubMed  Google Scholar 

  9. Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, Holmberg SB, Lindtner J, Snyder R, Thurlimann B, Murray E, Viale G, Castiglione-Gertsch M, Coates AS, Goldhirsch A (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26(18):3006–3014. doi:10.1200/JCO.2007.14.9336

    Article  PubMed  Google Scholar 

  10. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Karesen R, Botstein D, Borresen-Dale AL, Jeffrey SS (2004) Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15(6):2523–2536. doi:10.1091/mbc.E03-11-0786

    Article  PubMed  CAS  Google Scholar 

  11. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220(1):45–57

    Google Scholar 

  12. Bertucci F, Orsetti B, Negre V, Finetti P, Rouge C, Ahomadegbe JC, Bibeau F, Mathieu MC, Treilleux I, Jacquemier J, Ursule L, Martinec A, Wang Q, Benard J, Puisieux A, Birnbaum D, Theillet C (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 27(40):5359–5372. doi:10.1038/onc.2008.158

    Article  PubMed  CAS  Google Scholar 

  13. Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55. doi:10.1186/1471-2407-7-55

    Article  PubMed  Google Scholar 

  14. Turashvili G, Bouchalova K, Bouchal J, Kolar Z (2007) Expression of E-cadherin and c-erbB-2/HER-2/neu oncoprotein in high-grade breast cancer. Cesk Pathol 43(3):87–92

    CAS  Google Scholar 

  15. Ellis IO, Pinder SE, Bobrow L et al (2005) Classifying invasive carcinomas Pathology reporting of breast disease, vol. no 58. NHSBSP publications: The Royal College of Pathologists, Sheffield, pp 61–69

  16. Rosen PP (2009) Rosen’s breast pathology, 3rd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

  17. Yu J, Bhargava R, Dabbs DJ (2010) Invasive lobular carcinoma with extracellular mucin production and HER-2 overexpression: a case report and further case studies. Diagn Pathol 5:36

    Article  PubMed  Google Scholar 

  18. Rosa M, Mohammadi A, Masood S (2009) Lobular carcinoma of the breast with extracellular mucin: new variant of mucin-producing carcinomas? Pathol Int 59(6):405–409. doi:10.1111/j.1440-1827.2009.02385.x

    Article  PubMed  Google Scholar 

  19. Haltas H, Bayrak R, Yenidunya S, Kosehan D, Sen M, Akin K (2012) Invasive lobular carcinoma with extracellular mucin as a distinct variant of lobular carcinoma: a case report. Diagn Pathol 7(1):91. doi:10.1186/1746-1596-7-91

    Article  PubMed  Google Scholar 

  20. Breslow A, Brancaccio ME (1976) Intracellular mucin production by lobular breast carcinoma cells. Arch Pathol Lab Med 100(11):620–621

    PubMed  CAS  Google Scholar 

  21. Gad A, Azzopardi JG (1975) Lobular carcinoma of the breast: a special variant of mucin-secreting carcinoma. J Clin Pathol 28(9):711–716

    Article  PubMed  CAS  Google Scholar 

  22. Frost AR, Terahata S, Yeh IT, Siegel RS, Overmoyer B, Silverberg SG (1995) The significance of signet ring cells in infiltrating lobular carcinoma of the breast. Arch Pathol Lab Med 119(1):64–68

    PubMed  CAS  Google Scholar 

  23. Merino MJ, Livolsi VA (1981) Signet ring carcinoma of the female breast: a clinicopathologic analysis of 24 cases. Cancer 48(8):1830–1837

    Article  PubMed  CAS  Google Scholar 

  24. Hull MT, Seo IS, Battersby JS, Csicsko JF (1980) Signet-ring cell carcinoma of the breast: a clinicopathologic study of 24 cases. Am J Clin Pathol 73(1):31–35

    PubMed  CAS  Google Scholar 

  25. Rosen PP, Lesser ML, Kinne DW (1985) Breast carcinoma at the extremes of age: a comparison of patients younger than 35 years and older than 75 years. J Surg Oncol 28(2):90–96

    Article  PubMed  CAS  Google Scholar 

  26. Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM (1999) Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 17(5):1442–1448

    PubMed  CAS  Google Scholar 

  27. Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, de Jong D, Van de Vijver MJ, Van’t Veer LJ, Peterse JL (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216(2):141–150

    Article  PubMed  CAS  Google Scholar 

  28. Adsay NV, Merati K, Nassar H, Shia J, Sarkar F, Pierson CR, Cheng JD, Visscher DW, Hruban RH, Klimstra DS (2003) Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol 27(5):571–578

    Article  PubMed  Google Scholar 

  29. Zotter S, Hageman PC, Lossnitzer A, van den Tweel J, Hilkens J, Mooi WJ, Hilgers J (1988) Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. Int J Cancer Suppl 3:38–44

    Article  Google Scholar 

  30. Kato N, Endo Y, Tamura G, Katayama Y, Motoyama T (1999) Mucinous carcinoma of the breast: a multifaceted study with special reference to histogenesis and neuroendocrine differentiation. Pathol Int 49(11):947–955

    Article  PubMed  CAS  Google Scholar 

  31. Chu JS, Chang KJ (1999) Mucin expression in mucinous carcinoma and other invasive carcinomas of the breast. Cancer Lett 142(1):121–127

    Article  PubMed  CAS  Google Scholar 

  32. Fentiman IS, Millis RR, Smith P, Ellul JP, Lampejo O (1997) Mucoid breast carcinomas: histology and prognosis. Br J Cancer 75(7):1061–1065

    Article  PubMed  CAS  Google Scholar 

  33. Andre S, Cunha F, Bernardo M, Meneses e Sousa J, Cortez F, Soares J (1995) Mucinous carcinoma of the breast: a pathologic study of 82 cases. J Surg Oncol 58(3):162–167

    Article  PubMed  CAS  Google Scholar 

  34. Paramo JC, Wilson C, Velarde D, Giraldo J, Poppiti RJ, Mesko TW (2002) Pure mucinous carcinoma of the breast: is axillary staging necessary? Ann Surg Oncol 9(2):161–164

    Article  PubMed  Google Scholar 

  35. Norris HJ, Taylor HB (1965) Prognosis of mucinous (gelatinous) carcinoma of the breast. Cancer 18:879–885

    Article  PubMed  CAS  Google Scholar 

  36. Toikkanen S, Kujari H (1989) Pure and mixed mucinous carcinomas of the breast: a clinicopathologic analysis of 61 cases with long-term follow-up. Hum Pathol 20(8):758–764

    Article  PubMed  CAS  Google Scholar 

  37. Silverberg SG, Kay S, Chitale AR, Levitt SH (1971) Colloid carcinoma of the breast. Am J Clin Pathol 55(3):355–363

    PubMed  CAS  Google Scholar 

  38. Rasmussen BB (1985) Human mucinous breast carcinomas and their lymph node metastases. A histological review of 247 cases. Pathol Res Pract 180(4):377–382

    Article  PubMed  CAS  Google Scholar 

  39. Gadre SA, Perkins GH, Sahin AA, Sneige N, Deavers MT, Middleton LP (2008) Neovascularization in mucinous ductal carcinoma in situ suggests an alternative pathway for invasion. Histopathology 53(5):545–553

    Article  PubMed  CAS  Google Scholar 

  40. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Article  PubMed  CAS  Google Scholar 

  41. Jacobsen BM, Harrell JC, Jedlicka P, Borges VF, Varella-Garcia M, Horwitz KB (2006) Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res 66(16):8274–8279

    Article  PubMed  CAS  Google Scholar 

  42. Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, Horwitz KB (2010) Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 70(7):2655–2664. doi:10.1158/0008-5472.CAN-09-4373

    Article  PubMed  CAS  Google Scholar 

  43. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A, Horwitz KB, Sartorius CA (2011) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 128(1):45–55. doi:10.1007/s10549-010-1078-6

    Article  PubMed  CAS  Google Scholar 

  44. van Bokhoven A, Caires A, Maria MD, Schulte AP, Lucia MS, Nordeen SK, Miller GJ, Varella-Garcia M (2003) Spectral karyotype (SKY) analysis of human prostate carcinoma cell lines. Prostate 57(3):226–244

    Article  PubMed  Google Scholar 

  45. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277(7):5209–5218

    Article  PubMed  CAS  Google Scholar 

  46. Jacobsen BM, Jambal P, Schittone SA, Horwitz KB (2009) ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors. Mol Endocrinol 23(7):989–1000. doi:10.1210/me.2009-0048

    Article  PubMed  CAS  Google Scholar 

  47. Toikkanen S, Eerola E, Ekfors TO (1988) Pure and mixed mucinous breast carcinomas: DNA stemline and prognosis. J Clin Pathol 41(3):300–303

    Article  PubMed  CAS  Google Scholar 

  48. Weigelt B, Geyer FC, Horlings HM, Kreike B, Halfwerk H, Reis-Filho JS (2009) Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol 22(11):1401–1414

    Article  PubMed  CAS  Google Scholar 

  49. Ko CD, Kim JS, Ko BG, Son BH, Kang HJ, Yoon HS, Cho EY, Gong G, Ahn SH (2003) The meaning of the c-kit proto-oncogene product in malignant transformation in human mammary epithelium. Clin Exp Metastasis 20(7):593–597

    Article  PubMed  CAS  Google Scholar 

  50. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, Dexter T, Davies S, Bulmer K, Ford E, Parry S, Budroni M, Palmieri G, Neville AM, O’Hare MJ, Lakhani SR (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64(9):3037–3045

    Article  PubMed  CAS  Google Scholar 

  51. Wan Y, Nordeen SK (2002) Overlapping but distinct gene regulation profiles by glucocorticoids and progestins in human breast cancer cells. Mol Endocrinol 16(6):1204–1214

    Article  PubMed  CAS  Google Scholar 

  52. Ghatge RP, Jacobsen BM, Schittone SA, Horwitz KB (2005) The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res 7(6):R1036–R1050

    Article  PubMed  CAS  Google Scholar 

  53. Karey KP, Sirbasku DA (1988) Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17 beta-estradiol. Cancer Res 48(14):4083–4092

    PubMed  CAS  Google Scholar 

  54. Sartorius CA, Shen T, Horwitz KB (2003) Progesterone receptors A and B differentially affect the growth of estrogen-dependent human breast tumor xenografts. Breast Cancer Res Treat 79(3):287–299

    Article  PubMed  CAS  Google Scholar 

  55. Waaseth M, Bakken K, Dumeaux V, Olsen KS, Rylander C, Figenschau Y, Lund E (2008) Hormone replacement therapy use and plasma levels of sex hormones in the Norwegian Women and Cancer postgenome cohort—a cross-sectional analysis. BMC Womens Health 8:1. doi:10.1186/1472-6874-8-1

    Article  PubMed  Google Scholar 

  56. Molavi D, Argani P (2008) Distinguishing benign dissecting mucin (stromal mucin pools) from invasive mucinous carcinoma. Adv Anat Pathol 15(1):1–17

    Article  PubMed  CAS  Google Scholar 

  57. Wilson TE, Helvie MA, Oberman HA, Joynt LK (1995) Pure and mixed mucinous carcinoma of the breast: pathologic basis for differences in mammographic appearance. AJR Am J Roentgenol 165(2):285–289

    PubMed  CAS  Google Scholar 

  58. Dabbs DJ, Bhargava R, Chivukula M (2007) Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol 31(3):427–437. doi:10.1097/01.pas.0000213386.63160.3f

    Article  PubMed  Google Scholar 

  59. Capella C, Eusebi V, Mann B, Azzopardi JG (1980) Endocrine differentiation in mucoid carcinoma of the breast. Histopathology 4(6):613–630

    Article  PubMed  CAS  Google Scholar 

  60. Kehr EL, Jorns JM, Ang D, Warrick A, Neff T, Degnin M, Lewis R, Beadling C, Corless CL, Troxell ML (2012) Mucinous breast carcinomas lack PIK3CA and AKT1 mutations. Hum Pathol. doi:10.1016/j.humpath.2012.03.012

  61. Eltorky M, Hall JC, Osborne PT, el Zeky F (1994) Signet-ring cell variant of invasive lobular carcinoma of the breast. A clinicopathologic study of 11 cases. Arch Pathol Lab Med 118(3):245–248

    PubMed  CAS  Google Scholar 

  62. Raju U, Ma CK, Shaw A (1993) Signet ring variant of lobular carcinoma of the breast: a clinicopathologic and immunohistochemical study. Mod Pathol 6(5):516–520

    PubMed  CAS  Google Scholar 

  63. Harris M, Vasudev KS, Anfield C, Wells S (1978) Mucin-producing carcinomas of the breast: ultrastructural observations. Histopathology 2(3):177–188

    Article  PubMed  CAS  Google Scholar 

  64. Chu PG, Weiss LM (2004) Immunohistochemical characterization of signet-ring cell carcinomas of the stomach, breast, and colon. Am J Clin Pathol 121(6):884–892. doi:10.1309/A09E-RYMF-R64N-ERDW

    Article  PubMed  Google Scholar 

  65. Foote FW, Stewart FW (1941) Lobular carcinoma in situ: a rare form of mammary cancer. Am J Pathol 17(4):491–496.3

    Google Scholar 

  66. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8(1):47–61

    Article  PubMed  CAS  Google Scholar 

  67. Khilko N, Wang J, Wei B, Hicks DG, Tang P (2010) Invasive lobular carcinomas do not express basal cytokeratin markers CK5/6, CK14 and CK17. Breast Cancer (Auckl) 4:49–55. doi:10.4137/BCBCR.S5037

    Google Scholar 

  68. Huiping C, Sigurgeirsdottir JR, Jonasson JG, Eiriksdottir G, Johannsdottir JT, Egilsson V, Ingvarsson S (1999) Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. Br J Cancer 81(7):1103–1110. doi:10.1038/sj.bjc.6690815

    Article  PubMed  CAS  Google Scholar 

  69. Di Saverio S, Gutierrez J, Avisar E (2008) A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat 111(3):541–547

    Article  PubMed  Google Scholar 

  70. Clayton F (1986) Pure mucinous carcinomas of breast: morphologic features and prognostic correlates. Hum Pathol 17(1):34–38

    Article  PubMed  CAS  Google Scholar 

  71. Komenaka IK, El-Tamer MB, Troxel A, Hamele-Bena D, Joseph KA, Horowitz E, Ditkoff BA, Schnabel FR (2004) Pure mucinous carcinoma of the breast. Am J Surg 187(4):528–532

    Article  PubMed  Google Scholar 

  72. Reeves GK, Beral V, Green J, Gathani T, Bull D, Million Women Study C (2006) Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. Lancet Oncol 7(11):910–918

  73. Shousha S, Coady AT, Stamp T, James KR, Alaghband-Zadeh J (1989) Oestrogen receptors in mucinous carcinoma of the breast: an immunohistological study using paraffin wax sections. J Clin Pathol 42(9):902–905

    Article  PubMed  CAS  Google Scholar 

  74. Prat A, Ellis MJ, Perou CM (2012) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9(1):48–57. doi:10.1038/nrclinonc.2011.178

    Article  CAS  Google Scholar 

  75. Acs G, Esposito NN, Kiluk J, Loftus L, Laronga C (2012) A mitotically active, cellular tumor stroma and/or inflammatory cells associated with tumor cells may contribute to intermediate or high Oncotype DX recurrence scores in low-grade invasive breast carcinomas. Mod Pathol 25(4):556–566. doi:10.1038/modpathol.2011.194

    Article  PubMed  CAS  Google Scholar 

  76. Kounalakis N, Diamond J, Rusthoven K, Horn W, Jindal S, Wisell J, Klein CE, Elias A, Finlayson C, Borges VF (2011) Diagnosis of invasive lobular carcinoma in a young woman presenting with pleomorphic lobular carcinoma in situ on core biopsy. Oncology (Williston Park) 25(4):351–356

    Google Scholar 

  77. Cho LC, Hsu YH (2008) Expression of androgen, estrogen and progesterone receptors in mucinous carcinoma of the breast. Kaohsiung J Med Sci 24(5):227–232. doi:10.1016/S1607-551X(08)70146-3

    Article  PubMed  Google Scholar 

  78. Melamed MR, Robbins GF, Foote FW Jr (1961) Prognostic significance of gelatinous mammary carcinoma. Cancer 14:699–704

    Article  PubMed  CAS  Google Scholar 

  79. Komaki K, Sakamoto G, Sugano H, Morimoto T, Monden Y (1988) Mucinous carcinoma of the breast in Japan. A prognostic analysis based on morphologic features. Cancer 61(5):989–996

    Article  PubMed  CAS  Google Scholar 

  80. Stanley MW, Tani EM, Skoog L (1989) Mucinous breast carcinoma and mixed mucinous-infiltrating ductal carcinoma: a comparative cytologic study. Diagn Cytopathol 5(2):134–138

    Article  PubMed  CAS  Google Scholar 

  81. Rosen PP, Wang T-Y (1980) Colloid carcinoma of the breast. Analysis of 64 patients with long term followup. Am J Clin Pathol 73:304

    Google Scholar 

  82. Pusztai L, Sotiriou C, Buchholz TA, Meric F, Symmans WF, Esteva FJ, Sahin A, Liu ET, Hortobagi GN (2003) Molecular profiles of invasive mucinous and ductal carcinomas of the breast: a molecular case study. Cancer Genet Cytogenet 141(2):148–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by The Avon Foundation for Women (BMJ, KBH), NIH NCI CA026869, the National Foundation for Cancer Research, and the Breast Cancer Research Foundation (KBH). We are grateful to the University of Colorado Cancer Center Sequencing and Cytogenetics Core laboratories for technical support, to Dr. Hany Abdel-Hafiz for providing PCR primers for pS2 and CathD, and we thank Robert W. Burke for helpful discussions. All authors edited and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta M. Jacobsen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jambal, P., Badtke, M.M., Harrell, J.C. et al. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features. Breast Cancer Res Treat 137, 431–448 (2013). https://doi.org/10.1007/s10549-012-2377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2377-x

Keywords

Navigation