Skip to main content

Advertisement

Log in

Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Promoter hypermethylation of several tumour suppressor genes often occurs during breast carcinogenesis, but little is known about epigenetic silencing in the possible precursor columnar cell lesion (CCL). Promoter hypermethylation of 50 different tumour suppressor genes was assessed in normal breast tissue (N = 10), CCL (N = 15), ductal carcinoma in situ (DCIS) grade I originating in CCL (N = 5) and paired CCL (N = 15) with DCIS (N = 7) and/or invasive carcinoma (N = 14) by Methylation-specific multiplex ligation-dependent probe amplification. Increasing mean cumulative methylation levels were found from normal breast tissue to CCL to DCIS and invasive carcinoma (P < 0.001) with similar methylation levels in DCIS and invasive carcinoma. Methylation levels and frequencies (in the overall analysis and analysis of only the synchronous lesions) were the highest for RASSF1, CCND2, ID4, SCGB3A1 and CDH13. The methylation levels of ID4, CCND2, and CDH13 increased significantly from normal breast tissue to CCL and to DCIS/invasive carcinoma. RASSF1, SCGB3A1 and SFRP5 had significant higher methylation levels in CCL compared to normal breast tissue, but showed no significant differences between CCL, DCIS and invasive carcinoma. Also, no difference was found between CCLs with and without atypia, or CCLs with or without synchronous cancer. In conclusion, promoter hypermethylation for several established tumour suppressor genes is already present in CCLs, underlining that promoter hypermethylation is an early event in breast carcinogenesis. Atypia in CCL or the presence of synchronous more advanced lesions does not seem to be accompanied by higher methylation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8:47–61

    Article  PubMed  CAS  Google Scholar 

  2. Lee S, Medina D, Tsimelzon A, Mohsin SK, Mao S, Wu Y, Allred DC (2007) Alterations of gene expression in the development of early hyperplastic precursors of breast cancer. Am J Pathol 171:252–262

    Article  PubMed  CAS  Google Scholar 

  3. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP, Hanby A, Pinder SE, Lee AH, Humphreys S, Ellis IO, Lakhani SR (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746

    Article  PubMed  Google Scholar 

  4. Sinn HP (2009) Breast cancer precursors: lessons learned from molecular genetics. J Mol Med 87:113–115

    Article  PubMed  Google Scholar 

  5. Schnitt SJ, Vincent-Salomon A (2003) Columnar cell lesions of the breast. Adv Anat Pathol 10:113–124

    Article  PubMed  Google Scholar 

  6. Tavassoli FA, Devilee P (2003) WHO classification tumours of the breast and female genital organs. IARC, Lyon

    Google Scholar 

  7. Feeley L, Quinn CM (2008) Columnar cell lesions of the breast. Histopathology 52:11–19

    Article  PubMed  CAS  Google Scholar 

  8. Verschuur-Maes AHJ, Van Deurzen CHM, Monninkhof EM, van Diest PJ (2011) Columnar cell lesions on breast needle biopsies: is surgical excision necessary? A systematic review. Ann Surg 255:259–265

    Article  Google Scholar 

  9. Aulmann S, Elsawaf Z, Penzel R, Schirmacher P, Sinn HP (2009) Invasive tubular carcinoma of the breast frequently is clonally related to flat epithelial atypia and low-grade ductal carcinoma in situ. Am J Surg Pathol 33:1646–1653

    Article  PubMed  Google Scholar 

  10. Dabbs DJ, Carter G, Fudge M, Peng Y, Swalsky P, Finkelstein S (2006) Molecular alterations in columnar cell lesions of the breast. Mod Pathol 19:344–349

    Article  PubMed  CAS  Google Scholar 

  11. Moinfar F, Man YG, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer 88:2072–2081

    Article  PubMed  CAS  Google Scholar 

  12. Buyru N, Altinisik J, Ozdemir F, Demokan S, Dalay N (2009) Methylation profiles in breast cancer. Cancer Invest 27:307–312

    Article  PubMed  CAS  Google Scholar 

  13. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569

    Article  PubMed  CAS  Google Scholar 

  14. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  15. Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4:242–254

    Article  PubMed  CAS  Google Scholar 

  16. Marzese DM, Gago FE, Vargas-Roig LM, Roque M (2010) Simultaneous analysis of the methylation profile of 26 cancer related regions in invasive breast carcinomas by MS-MLPA and drMS-MLPA. Mol Cell Probes 24:271–280

    Article  PubMed  CAS  Google Scholar 

  17. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482

    Article  PubMed  CAS  Google Scholar 

  18. Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A, Rossiello R, Zito F, Stefania T, Paradiso A, Carella M, Dallapiccola B, Murgo R, Carosi I, Bisceglia M, Fazio VM, Sidransky D, Parrella P (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomarkers Prev 18:2694–2700

    Article  PubMed  CAS  Google Scholar 

  19. Liu T, Niu Y, Feng Y, Niu R, Yu Y, Lv A, Yang Y (2008) Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol 39:1637–1646

    Article  PubMed  CAS  Google Scholar 

  20. Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458:73–84

    Article  PubMed  CAS  Google Scholar 

  21. van Diest PJ (2002) No consent should be needed for using leftover body material for scientific purposes. BMJ 325:648–651

    Article  PubMed  Google Scholar 

  22. Bol GM, Suijkerbuijk KP, Bart J, Vooijs M, van der Wall E, van Diest PJ (2010) Methylation profiles of hereditary and sporadic ovarian cancer. Histopathology 57:363–370

    Article  PubMed  Google Scholar 

  23. Seeber LM, Zweemer RP, Marchionni L, Massuger LF, Smit VT, van Baal WM, Verheijen RH, van Diest PJ (2010) Methylation profiles of endometrioid and serous endometrial cancers. Endocr Relat Cancer 17:663–673

    Article  PubMed  CAS  Google Scholar 

  24. Suijkerbuijk KP, Pan X, Van der Wall E, van Diest PJ, Vooijs M (2010) Comparison of different promoter methylation assays in breast cancer. Anal Cell Pathol (Amst) 33:133–141

    CAS  Google Scholar 

  25. van Diest PJ, Suijkerbuijk KP, Koop EA, de Weger RA, Van der Wall E (2010) Low levels of BNIP3 promoter hypermethylation in invasive breast cancer. Anal Cell Pathol (Amst) 33:175–176

    Google Scholar 

  26. Gylling A, Abdel-Rahman WM, Juhola M, Nuorva K, Hautala E, Jarvinen HJ, Mecklin JP, Aarnio M, Peltomaki P (2007) Is gastric cancer part of the tumour spectrum of hereditary non-polyposis colorectal cancer? A molecular genetic study. Gut 56:926–933

    Article  PubMed  CAS  Google Scholar 

  27. Joensuu EI, Abdel-Rahman WM, Ollikainen M, Ruosaari S, Knuutila S, Peltomaki P (2008) Epigenetic signatures of familial cancer are characteristic of tumor type and family category. Cancer Res 68:4597–4605

    Article  PubMed  CAS  Google Scholar 

  28. Suijkerbuijk KP, Fackler MJ, Sukumar S, van Gils CH, van Laar T, Van der Wall E, Vooijs M, van Diest PJ (2008) Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol 19:1870–1874

    Article  PubMed  CAS  Google Scholar 

  29. Liu T, Niu Y, Feng Y, Niu R, Yu Y, Lv A, Yang Y (2008) Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol 39:1637–1646

    Article  PubMed  CAS  Google Scholar 

  30. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90:697–703

    Article  PubMed  Google Scholar 

  31. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP, Hanby A, Pinder SE, Lee AH, Humphreys S, Ellis IO, Lakhani SR (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746

    Article  PubMed  Google Scholar 

  32. Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, Harms G, Fu L, Hollema H, Berg A (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163

    Article  PubMed  Google Scholar 

  33. Ellsworth RE, Ellsworth DL, Weyandt JD, Fantacone-Campbell JL, Deyarmin B, Hooke JA, Shriver CD (2010) Chromosomal alterations in pure nonneoplastic breast lesions: implications for breast cancer progression. Ann Surg Oncol 17:1688–1694

    Article  PubMed  Google Scholar 

  34. Subramaniam MM, Chan JY, Omar MF, Ito K, Ito Y, Yeoh KG, Salto-Tellez M, Putti TC (2010) Lack of RUNX3 inactivation in columnar cell lesions of breast. Histopathology 57:555–563

    Article  PubMed  Google Scholar 

  35. Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, Sukumar S, Argani P (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975

    Article  PubMed  CAS  Google Scholar 

  36. Moelans CB, de Weger RA, Monsuur HN, Maes AH, van Diest PJ (2010) Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Anal Cell Pathol (Amst) 33:165–173

    CAS  Google Scholar 

  37. Muggerud AA, Ronneberg JA, Warnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Borresen-Dale AL, Kristensen VN, Sorlie T, Tost J (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12:R3

    Article  PubMed  Google Scholar 

  38. Bertolo C, Guerrero D, Vicente F, Cordoba A, Esteller M, Ropero S, Guillen-Grima F, Martinez-Penuela JM, Lera JM (2008) Differences and molecular immunohistochemical parameters in the subtypes of infiltrating ductal breast cancer. Am J Clin Pathol 130:414–424

    Article  PubMed  CAS  Google Scholar 

  39. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    Article  PubMed  CAS  Google Scholar 

  40. Chen CM, Chen HL, Hsiau TH, Hsiau AH, Shi H, Brock GJ, Wei SH, Caldwell CW, Yan PS, Huang TH (2003) Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol 163:37–45

    Article  PubMed  CAS  Google Scholar 

  41. Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC Jr, Yu Y (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10:378

    Article  PubMed  Google Scholar 

  42. Honorio S, Agathanggelou A, Schuermann M, Pankow W, Viacava P, Maher ER, Latif F (2003) Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene 22:147–150

    Article  PubMed  CAS  Google Scholar 

  43. Lee JS, Fackler MJ, Teo WW, Lee JH, Choi C, Park MH, Yoon JH, Zhang Z, Argani P, Sukumar S (2008) Quantitative promoter hypermethylation profiles of ductal carcinoma in situ in North American and Korean women: potential applications for diagnosis. Cancer Biol Ther 7:1398–1406

    PubMed  CAS  Google Scholar 

  44. Pasquali L, Bedeir A, Ringquist S, Styche A, Bhargava R, Trucco G (2007) Quantification of CpG island methylation in progressive breast lesions from normal to invasive carcinoma. Cancer Lett 257:136–144

    Article  PubMed  CAS  Google Scholar 

  45. Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R, Taback B (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162

    Article  PubMed  CAS  Google Scholar 

  46. Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A, Knuchel R, Dahl E (2008) Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer 8:154

    Article  PubMed  Google Scholar 

  47. Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE, Hoon DS (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727

    Article  PubMed  CAS  Google Scholar 

  48. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, Weitzman SA, Marks J, Sukumar S (2001) Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 61:2782–2787

    PubMed  CAS  Google Scholar 

  49. Li S, Rong M, Iacopetta B (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280

    Article  PubMed  CAS  Google Scholar 

  50. Parrella P, Poeta ML, Gallo AP, Prencipe M, Scintu M, Apicella A, Rossiello R, Liguoro G, Seripa D, Gravina C, Rabitti C, Rinaldi M, Nicol T, Tommasi S, Paradiso A, Schittulli F, Altomare V, Fazio VM (2004) Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res 10:5349–5354

    Article  PubMed  CAS  Google Scholar 

  51. Shigematsu H, Suzuki M, Takahashi T, Miyajima K, Toyooka S, Shivapurkar N, Tomlinson GE, Mastrangelo D, Pass HI, Brambilla E, Sathyanarayana UG, Czerniak B, Fujisawa T, Shimizu N, Gazdar AF (2005) Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies. Int J Cancer 113:600–604

    Article  PubMed  CAS  Google Scholar 

  52. Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M, Minna JD, Gazdar AF (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61:4556–4560

    PubMed  CAS  Google Scholar 

  53. Suzuki H, Toyota M, Carraway H, Gabrielson E, Ohmura T, Fujikane T, Nishikawa N, Sogabe Y, Nojima M, Sonoda T, Mori M, Hirata K, Imai K, Shinomura Y, Baylin SB, Tokino T (2008) Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer 98:1147–1156

    Article  PubMed  CAS  Google Scholar 

  54. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knuchel R, Dahl E (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29:991–998

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Oncology Centre of St. Antonius Hospital Nieuwegein.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. van Diest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschuur-Maes, A.H.J., de Bruin, P.C. & van Diest, P.J. Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer. Breast Cancer Res Treat 136, 705–715 (2012). https://doi.org/10.1007/s10549-012-2301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2301-4

Keywords

Navigation