Skip to main content

Advertisement

Log in

Deep sequencing reveals small RNA characterization of invasive micropapillary carcinomas of the breast

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Invasive micropapillary carcinoma (IMPC) is an uncommon histological type of breast cancer. IMPC has a special growth pattern and a more aggressive behavior than invasive ductal carcinomas of no special types (IDC-NSTs). microRNAs are a large class of non-coding RNAs involved in the regulation of various biological processes. Here, we analyzed the small RNA transcriptomes of five formalin-fixed paraffin-embedded (FFPE) pure IMPC samples and five FFPE IDC-NSTs samples by means of next-generation sequencing, generating a total of >170,000,000 clean reads. In an unsupervised cluster analysis, differently expressed miRNAs generated a tree with clear distinction between IMPC and IDC-NSTs classes. Paired fresh-frozen and FFPE specimens showed very similar miRNA expression profiles. By means of RT-qPCR, we further investigated miRNA expression in more IMPC (n = 22) and IDC-NSTs (n = 24) FFPE samples and found let-7b, miR-30c, miR-148a, miR-181a, miR-181a*, and miR-181b were significantly differently expressed between the two groups. We also elucidated several features of miRNA in these breast cancer tissues including 5′ variability, miRNA editing, and 3′ untemplated addition. Our findings will lead to further understanding of the invasive potency of IMPC and gain an insight into the diversity and complexity of small RNA molecules in breast cancer tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miRNA:

microrna

IMPC:

Invasive micropapillary carcinoma

IDC-NSTs:

Invasive ductal carcinomas of no special types

FFPE tissue:

Formalin-fixed paraffin-embedded tissue

UTR:

Untranslated region

RIN:

RNA integrity numbers

EMT:

Epithelial-to-mesenchymal transition

FEA:

Flat epithelial atypia

DCIS:

Ductal carcinoma in situ

References

  1. Siriaunkgul S, Tavassoli FA (1993) Invasive micropapillary carcinoma of the breast. Mod Pathol 6:660–662

    PubMed  CAS  Google Scholar 

  2. Luna-More S, Gonzalez B, Acedo C et al (1994) Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol Res Pract 190:668–674

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Fan Y, Lang RG et al (2008) Breast carcinoma with micropapillary features: clinicopathologic study and long-term follow-up of 100 cases. Int J Surg Pathol 16:155–163

    Article  PubMed  CAS  Google Scholar 

  4. Nassar H (2004) Carcinomas with micropapillary morphology: clinical significance and current concepts. Adv Anat Pathol 11:297–303

    Article  PubMed  Google Scholar 

  5. Paterakos M, Watkin WG, Edgerton SM et al (1999) Invasive micropapillary carcinoma of the breast: a prognostic study. Hum Pathol 30:1459–1463

    Article  PubMed  CAS  Google Scholar 

  6. Walsh MM, Bleiweiss IJ (2001) Invasive micropapillary carcinoma of the breast: eighty cases of an underrecognized entity. Hum Pathol 32:583–589

    Article  PubMed  CAS  Google Scholar 

  7. Guo X, Chen L, Lang R et al (2006) Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis. Am J Clin Pathol 126:740–746

    Article  PubMed  Google Scholar 

  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  9. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  10. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  11. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  12. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  13. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  14. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  15. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  16. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  17. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  18. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  19. Valastyan S, Reinhardt F, Benaich N et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  PubMed  CAS  Google Scholar 

  20. Shimono Y, Zabala M, Cho WR et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  21. Martello G, Rosado A, Ferrari F et al (2010) A MicroRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  PubMed  CAS  Google Scholar 

  22. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  23. Li S, Fu H, Wang Y et al (2009) MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 49:1194–1202

    Article  PubMed  CAS  Google Scholar 

  24. Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  PubMed  CAS  Google Scholar 

  25. Samuel CE (2003) RNA editing minireview series. J Biol Chem 278:1389–1390

    Article  PubMed  CAS  Google Scholar 

  26. Li M, Wang IX, Li Y et al (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

    Article  PubMed  CAS  Google Scholar 

  27. Blanc V, Davidson NO (2003) C-to-U RNA editing: mechanisms leading to genetic diversity. J Biol Chem 278:1395–1398

    Article  PubMed  CAS  Google Scholar 

  28. Maas S, Rich A, Nishikura K (2003) A-to-I RNA editing: recent news and residual mysteries. J Biol Chem 278:1391–1394

    Article  PubMed  CAS  Google Scholar 

  29. Yang W, Chendrimada TP, Wang Q et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

  30. Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  31. Wheeler BM, Heimberg AM, Moy VN et al (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  PubMed  CAS  Google Scholar 

  32. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed  CAS  Google Scholar 

  33. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  34. Katoh T, Sakaguchi Y, Miyauchi K et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23:433–438

    Article  PubMed  CAS  Google Scholar 

  35. Kim YK, Heo I, Kim VN (2011) Modifications of small RNAs and their associated proteins. Cell 143:703–709

    Article  Google Scholar 

  36. Baffa R, Fassan M, Volinia S et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219:214–221

    Article  PubMed  CAS  Google Scholar 

  37. Joglekar MV, Patil D, Joglekar VM et al (2009) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 1:137–147

    Article  PubMed  Google Scholar 

  38. Braun J, Hoang-Vu C, Dralle H et al (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244

    Article  PubMed  CAS  Google Scholar 

  39. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    Article  PubMed  CAS  Google Scholar 

  40. Qi L, Bart J, Tan LP et al (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163

    Article  PubMed  Google Scholar 

  41. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  42. Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Kolb FA, Jaskiewicz L et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    Article  PubMed  CAS  Google Scholar 

  44. Wu H, Ye C, Ramirez D et al (2009) Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS ONE 4:e7566

    Article  PubMed  Google Scholar 

  45. Ebhardt HA, Tsang HH, Dai DC et al (2009) Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res 37:2461–2470

    Article  PubMed  CAS  Google Scholar 

  46. Jones MR, Quinton LJ, Blahna MT et al (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11:1157–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (973 Program) [2009CB521700] and the Key Program of Chinese National Natural Science Foundation [30930038], and partially by grants from the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China [IRT0743] and the Chinese National Natural Science Foundation [30800355].

Conflict of interest

No conflicts of interest were declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuqing Zhang or Li Fu.

Additional information

Shuai Li and Cuicui Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2012_2166_MOESM1_ESM.tif

Supplementary Fig. 1 Quality assessment of RNA sample. Representative Agilent 2100 Bioanalyzer electropherograms of one fresh-frozen (left) and one FFPE (right) sample. The fresh-frozen sample had a RIN = 7.9 and the FFPE sample had a RIN = 2.4 (TIFF 3406 kb)

10549_2012_2166_MOESM2_ESM.tif

Supplementary Fig. 2 Concordance of miRNA expression profiling between paired FFPE and fresh-frozen samples by deep sequencing. Pearson’s correlation was used to measure the similarity between paired samples (TIFF 8302 kb)

10549_2012_2166_MOESM3_ESM.tif

Supplementary Fig. 3 Drosha defines more precise 5′ ends than Dicer. Data from miRNAs that generated more than 1000 reads and have exclusively unique genomic mappings are summarized. For each miRNA, the heterogeneity of its 5′ end is calculated as the mean of the absolute distance between the 5′ extremity of mapped read and the 5′ end of miRBase reference sequence. The cutting accuracy was compared by means of the Non-parametric test (TIFF 13904 kb)

10549_2012_2166_MOESM4_ESM.tif

Supplementary Fig. 4 Models of miRNA 5′ ends definition by Drosha and Dicer. Drosha and Dicer define the 5′-ends of 5p and 3p miRNAs, respectively. DGCR8 binds to the stem-ssRNA junction of pri-miRNA and locates Drosha catalytic site ~ 11 bp away. Dicer determines its cleavage sites by measuring a fixed distance (~ 22 bp) from the 3′ overhang of the dsRNA terminus. The 3′ ends of pre-miRNAs can be modified by nucleotidyl transferases or exonucleases leading to floating 3′ overhangs. These unstable reference sites make Dicer produce relatively inaccurate 5′ ends. (TIFF 14030 kb)

Supplementary Table 1. Primer Sequence and Amplification Efficiency (DOC 35 kb)

Supplementary Table 2. Mapping Statistics of small RNAs (DOC 44 kb)

10549_2012_2166_MOESM7_ESM.doc

Supplementary Table 3. Differently Expressed miRNAs between IMPC and IDC-NSTs by FFPE Specimen Deep sequencing Analysis. (DOC 119 kb)

10549_2012_2166_MOESM8_ESM.doc

Supplementary Table 4A. miRNA Editing Forms in IMPC and IDC-NSTs. Supplementary Table 4B. miRNA Editing Frequency of Each Position in IMPC and IDC-NSTs. (DOC 100 kb)

Supplementary Table 5. miRNA 3′ Untemplate Nucleotide Addition in IMPC and IDC-NSTs. (DOC 34 kb)

10549_2012_2166_MOESM10_ESM.doc

Supplementary Table 6. Differentially Expressed Genes between IMPC and IDC-NST and Their Potential Regulating miRNAs. (DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Yang, C., Zhai, L. et al. Deep sequencing reveals small RNA characterization of invasive micropapillary carcinomas of the breast. Breast Cancer Res Treat 136, 77–87 (2012). https://doi.org/10.1007/s10549-012-2166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2166-6

Keywords

Navigation