Skip to main content

Advertisement

Log in

Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Long interspersed element 1 (LINE-1), a non-coding genomic repeat sequence, methylation status can influence tumor progression. In this study, the clinical significance of LINE-1 methylation status was assessed in primary breast cancer in young versus old breast cancer patients. LINE-1 methylation index (MI) was assessed by absolute quantitative assessment of methylated alleles (AQAMA) PCR assay. Initially, LINE-1 MI was assessed in a preliminary study of 235 tissues representing different stages of ductal breast cancer development. Next, an independent cohort of 379 primary ductal breast cancer patients (median follow-up 18.9 years) was studied. LINE-1 hypomethylation was shown to occur in DCIS and invasive breast cancer. In primary breast cancer it was associated with pathological tumor stage (p = 0.026), lymph node metastasis (p = 0.022), and higher age at diagnosis (>55, p < 0.001). In multivariate analysis, LINE-1 hypomethylation was associated with decreased OS (HR 2.19, 95 % CI 1.17–4.09, log-rank p = 0.014), DFS (HR 2.05, 95 % CI 1.14–3.67, log-rank p = 0.016) and increased DR (HR 2.83, 95 % CI 1.53–5.21, log-rank p = 0.001) in younger (≤55 years), but not older patients (>55 years). LINE-1 analysis of primary breast cancer demonstrated cancer-related age-dependent hypomethylation. In patients ≤55 years, LINE-1 hypomethylation portends a high-risk of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AQAMA:

Absolute quantitative assessment of methylated alleles

ADH:

Atypical ductal hyperplasia

BCS:

Breast-conserving surgery

CT:

Chemotherapy

DFS:

Disease-free survival

DR:

Distant recurrence

DCIS:

Ductal carcinoma in situ

DH:

Ductal hyperplasia

ET:

Endocrine therapy

ER:

Estrogen receptor

HR:

Hazard ratio

HER2:

Human epidermal growth factor receptor 2

LCM:

Laser capture microdissection

LRR:

Locoregional recurrence

LINE-1:

Long interspersed element 1

MST:

Mastectomy

M:

Methylated

MI:

Methylation index

OS:

Overall survival

PEAT:

Paraffin-embedded archival tissues

PgR:

Progesterone receptor

RT:

Radiotherapy

U:

Unmethylated

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  2. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Article  Google Scholar 

  3. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  PubMed  CAS  Google Scholar 

  4. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  PubMed  CAS  Google Scholar 

  5. Mulero-Navarro S, Esteller M (2008) Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 68(1):1–11

    Article  PubMed  Google Scholar 

  6. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625(1–3):131–142

    Article  PubMed  Google Scholar 

  7. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468

    Article  PubMed  CAS  Google Scholar 

  8. Sausville EA, Carducci MA (2005) Making bad cells go good: the promise of epigenetic therapy. J Clin Oncol 23(17):3875–3876

    Article  PubMed  Google Scholar 

  9. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  PubMed  CAS  Google Scholar 

  10. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  PubMed  CAS  Google Scholar 

  11. St Laurent G 3rd, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131(5):299–305

    Article  PubMed  CAS  Google Scholar 

  12. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170

    Article  PubMed  CAS  Google Scholar 

  13. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6(4):e1000917

    Article  PubMed  Google Scholar 

  14. Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, Schernhammer ES, Hunter DJ, Giovannucci EL, Fuchs CS et al (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9:125

    Article  PubMed  Google Scholar 

  15. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D et al (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24(48):7213–7223

    Article  PubMed  CAS  Google Scholar 

  16. Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16(8):2418–2426

    Article  PubMed  CAS  Google Scholar 

  17. Allred DC, Mohsin SK (2000) Biological features of premalignant disease in the human breast. J Mammary Gland Biol Neoplasia 5(4):351–364

    Article  PubMed  CAS  Google Scholar 

  18. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312(3):146–151

    Article  PubMed  CAS  Google Scholar 

  19. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW et al (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353(3):229–237

    Article  PubMed  CAS  Google Scholar 

  20. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703

    Article  PubMed  Google Scholar 

  21. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340

    Article  PubMed  CAS  Google Scholar 

  22. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446

    Article  PubMed  CAS  Google Scholar 

  23. de Kruijf EM, van Nes JG, Sajet A, Tummers QR, Putter H, Osanto S, Speetjens FM, Smit VT, Liefers GJ, van de Velde CJ et al (2010) The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 16(4):1272–1280

    Article  PubMed  Google Scholar 

  24. van Nes JG, de Kruijf EM, Faratian D, van de Velde CJ, Putter H, Falconer C, Smit VT, Kay C, van de Vijver MJ, Kuppen PJ et al (2011) COX2 expression in prognosis and in prediction to endocrine therapy in early breast cancer patients. Breast Cancer Res Treat 125(3): 671–685

    Google Scholar 

  25. Allred DC, Carlson RW, Berry DA, Burstein HJ, Edge SB, Goldstein LJ, Gown A, Hammond ME, Iglehart JD, Moench S et al (2009) NCCN Task Force report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Cancer Netw 7(Suppl 6): S1–S21 (quiz S22–23)

    Google Scholar 

  26. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    Article  PubMed  CAS  Google Scholar 

  27. Hayes DF, Ethier S, Lippman ME (2006) New guidelines for reporting of tumor marker studies in breast cancer research and treatment: remark. Breast Cancer Res Treat 100(2):237–238

    Article  PubMed  Google Scholar 

  28. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072

    Article  PubMed  Google Scholar 

  29. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

  30. Sunami E, de Maat M, Vu A, Turner RR, Hoon DS (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE 6(4):e18884

    Article  PubMed  CAS  Google Scholar 

  31. de Maat MF, Umetani N, Sunami E, Turner RR, Hoon DS (2007) Assessment of methylation events during colorectal tumor progression by absolute quantitative analysis of methylated alleles. Mol Cancer Res 5(5):461–471

    Article  PubMed  Google Scholar 

  32. Tanemura A, Terando AM, Sim MS, van Hoesel AQ, de Maat MF, Morton DL, Hoon DS (2009) CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15(5):1801–1807

    Article  PubMed  CAS  Google Scholar 

  33. Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26(11):2389–2430

    Article  PubMed  CAS  Google Scholar 

  34. Trichopoulos D, MacMahon B, Cole P (1972) Menopause and breast cancer risk. J Natl Cancer Inst 48(3):605–613

    PubMed  CAS  Google Scholar 

  35. Lisabeth LD, Beiser AS, Brown DL, Murabito JM, Kelly-Hayes M, Wolf PA (2009) Age at natural menopause and risk of ischemic stroke: the Framingham heart study. Stroke 40(4):1044–1049

    Article  PubMed  Google Scholar 

  36. Adami HO, Malker B, Holmberg L, Persson I, Stone B (1986) The relation between survival and age at diagnosis in breast cancer. N Engl J Med 315(9):559–563

    Article  PubMed  CAS  Google Scholar 

  37. Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351 (9114):1451–1467

    Google Scholar 

  38. Jatoi I, Chen BE, Anderson WF, Rosenberg PS (2007) Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J Clin Oncol 25(13):1683–1690

    Article  PubMed  Google Scholar 

  39. Jemal A, Ward E, Thun MJ (2007) Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res 9(3):R28

    Article  PubMed  Google Scholar 

  40. Albain KS, Allred DC, Clark GM (1994) Breast cancer outcome and predictors of outcome: are there age differentials? J Natl Cancer Inst Monogr 16:35–42

    PubMed  Google Scholar 

  41. Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, Schnitt S, Abner A, Recht A, Vicini F, Harris JR (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 12(5):888–894

    PubMed  CAS  Google Scholar 

  42. Bastiaannet E, Liefers GJ, de Craen AJ, Kuppen PJ, van de Water W, Portielje JE, van der Geest LG, Janssen-Heijnen ML, Dekkers OM, van de Velde CJ et al (2010) Breast cancer in elderly compared to younger patients in the Netherlands: stage at diagnosis, treatment and survival in 127,805 unselected patients. Breast Cancer Res Treat 124(3):801–807

    Article  PubMed  CAS  Google Scholar 

  43. Giordano SH, Hortobagyi GN, Kau SW, Theriault RL, Bondy ML (2005) Breast cancer treatment guidelines in older women. J Clin Oncol 23(4):783–791

    Article  PubMed  Google Scholar 

  44. Moinfar F (2007) Essentials of diagnostic breast pathology, vol XVI. Springer, Heidelberg

  45. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, Jafferji I, Trowsdale J, Liefers GJ, van de Velde CJ et al (2012) NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 12(1):24

    Article  PubMed  Google Scholar 

  46. Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, Mutirangura A (2008) LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer 18(4):711–717

    Article  PubMed  CAS  Google Scholar 

  47. Harris CR, Normart R, Yang Q, Stevenson E, Haffty BG, Ganesan S, Cordon-Cardo C, Levine AJ, Tang LH (2010) Association of nuclear localization of a long interspersed nuclear element-1 protein in breast tumors with poor prognostic outcomes. Genes Cancer 1(2):115–124

    Article  PubMed  CAS  Google Scholar 

  48. Rockwood LD, Felix K, Janz S (2004) Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat Res 548(1–2):117–125

    PubMed  CAS  Google Scholar 

  49. Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, Nobuoka T, Nishida T, Miyazaki Y, Takamaru H et al (2010) A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res 16(21):5114–5123

    Article  PubMed  CAS  Google Scholar 

  50. Kazazian HH Jr, Goodier JL (2002) LINE drive: retrotransposition and genome instability. Cell 110(3):277–280

    Article  PubMed  CAS  Google Scholar 

  51. Hagan CR, Rudin CM (2002) Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am J Pharmacogenomics 2(1):25–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the clinical and pathological department staff at Saint John’s Health Center and LUMC for their support, and staff at Department of Molecular Oncology for technical support. This study was supported by funding from Susan G. Komen Breast Cancer Foundation Grant# BCTR0707528 (DSBH), the Leslie and Susan Gonda (Goldschmied) Foundation (DSBH, Los Angeles, CA), Ruth and Martin H. Weil Fund (DSBH, Los Angeles, CA), Associates for Breast and Prostate Cancer (ABC) Studies, Fashion Footwear Association of New York (FFANY), and California Breast Cancer Research Program #16IB-0076 (DSBH).

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave S. B. Hoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Hoesel, A.Q., van de Velde, C.J.H., Kuppen, P.J.K. et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res Treat 134, 1103–1114 (2012). https://doi.org/10.1007/s10549-012-2038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2038-0

Keywords

Navigation