Skip to main content

Advertisement

Log in

Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Innate adjuvant receptors are expressed in immune cells and some types of cancers. If antitumor therapies targeting these receptors are established, it is likely that they will be therapeutically beneficial because antitumor effects and immune-cell activation can be induced simultaneously. In this study, we tested this possibility of using an innate adjuvant receptor ligand, polyinosinic–polycytidylic acid [poly(I:C)], to treat human breast cancer cell lines. Three breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549) were used in this study. Poly(I:C) was transfected into these cancer cells to stimulate melanoma differentiation–associated gene (MDA) 5, which is a cytoplasmic adjuvant receptor. Poly(I:C) transfection significantly reduced the viability of all cell lines in a manner partially dependent on MDA5. Flow cytometeric analyses and immunoblot assays revealed that the antitumor effect depended on both caspase-dependent apoptosis and c-Myc- and cyclinD1-dependent growth arrest. Interestingly, poly(I:C) transfection was accompanied by autophagy, which is thought to protect cancer cells from apoptosis after poly(I:C) transfection. In a xenograft mouse model, local transfection of poly(I:C) significantly inhibited the growth of xenografted MDA-MB-231 cells. Our findings indicate that cytoplasmic delivery of poly(I:C) can induce apoptosis and growth arrest of human breast cancer cells, and that therapy-associated autophagy prevents apoptosis. The results of this study suggest that the innate adjuvant receptors are promising targets and that their ligands could serve as antitumor reagents, which have the potential to simultaneously induce antitumor effects and activate immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CFSE:

Carboxyfluorescein diacetate, succinimidyl ester

DC:

Dendritic cell

IFN:

Interferon

MDA:

Melanoma differentiation–associated gene

PI:

Propidium iodide

poly(I:C):

Polyinosinic–polycytidylic acid

siRNA:

Small interfering RNA

TLR:

Toll-like receptor

WST-8:

2-(2-Methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium monosodium salt

References

  1. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  2. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  3. Curtin JF, Liu N, Candolfi M et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 13:6:e10

    Google Scholar 

  4. Park SG, Jiang Z, Mortenson ED et al (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18:160–170

    Article  PubMed  CAS  Google Scholar 

  5. Bumette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496

    Article  Google Scholar 

  6. Stagg J, Loi S, Divisekara U et al (2011) Anti-ErbB-2 mAb therapy requires type I and II interferins and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 108:7142–7147

    Article  PubMed  CAS  Google Scholar 

  7. Kelly MG, Alvero AB, Chen R et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868

    Article  PubMed  CAS  Google Scholar 

  8. Szczepanski MJ, Czystowska M, Szajnik M et al (2009) Triggering of toll-like receptor 4 expressed on human head and squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res 69:3105–3113

    Article  PubMed  CAS  Google Scholar 

  9. He W, Liu Q, Wang L, Chen W, Li N, Cao X (2007) TLR4 signaling promotes immune escapes of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859

    Article  PubMed  CAS  Google Scholar 

  10. Chiron D, Pellat-Deceunynck C, Maillasson M, Bataille R, Jego G (2009) Phosphorothioate-modified TLR9 ligands protect cancer cells against TRAIL-induced apoptosis. J Immunol 183:4371–4377

    Article  PubMed  CAS  Google Scholar 

  11. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D (2011) Activation of toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 71:2466–2475

    Article  PubMed  CAS  Google Scholar 

  12. Morikawa T, Sugiyama A, Kume H et al (2007) Identification of toll-like receptor 3 as a potential therapeutic target in clear renal cell carcinoma. Clin Cancer Res 13:7503–7509

    Article  Google Scholar 

  13. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574

    Article  PubMed  CAS  Google Scholar 

  14. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176:4894–4901

    PubMed  CAS  Google Scholar 

  15. Salaun B, Zitvogel L, Asselin-Paturel C et al (2011) TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res 71:1607–1614

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto M, Seya T (2008) TLR3: interferon induction by double-strand RNA including poly(I:C). Adv Drug Delivery Rev 60:805–812

    Article  CAS  Google Scholar 

  17. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  18. Tormo D, Checinska A, Alonso-Curbelo D et al (2009) Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16:103–114

    Article  PubMed  CAS  Google Scholar 

  19. Besch R, Poeck H, Hohenauer T et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119:2399–2411

    PubMed  CAS  Google Scholar 

  20. Gewirtz DA (2009) Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 5:1232–1234

    Article  PubMed  Google Scholar 

  21. Buckley CD, Pilling D, Henriquez NV et al (1999) RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539

    Article  PubMed  CAS  Google Scholar 

  22. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of diseases. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  23. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  24. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  25. Ghiringhelli F, Apetoh L, Housseau F, Kroemer G, Zitvogel L (2007) Links between innate and cognate tumor immunity. Curr Opin Immunol 19:224–231

    Article  PubMed  CAS  Google Scholar 

  26. Ullrich E, Menard C, Flament C et al (2008) Dendritic cells and innate defense against tumor cells. Cytokine Growth Factor Rev 19:79–92

    Article  PubMed  CAS  Google Scholar 

  27. Barchet W, Wimmenauer V, Schlee M, Hartman G (2008) Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin Immunol 20:389–395

    Article  PubMed  CAS  Google Scholar 

  28. Ebihara T, Azuma M, Oshiumi H et al (2010) Identification of polyI:C-inducible membrane protein that participates in dendritic cell-mediated natural killer cell activation. J Exp Med 207:2675–2687

    Article  PubMed  CAS  Google Scholar 

  29. Hirabayashi K, Yano J, Inoue T et al (1999) Inhibition of cancer cell growth by polyinosinic–polycytidylic acid/cationic liposome complex: a new biological activity. Cancer Res 59:4325–4333

    PubMed  CAS  Google Scholar 

  30. Peng S, Geng J, Sun R, Tian Z, Wei H (2009) Polyinosinic–polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Sci 100:529–536

    Article  PubMed  CAS  Google Scholar 

  31. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M (2012) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother (in press)

  32. Muise-Hemericks RC, Grimes H, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N (1998) Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Ae-dependent pathway. J Biol Chem 273:29864–29872

    Article  Google Scholar 

  33. Akar U, Chaves-Reyz A, Barrio M et al (2008) Silencing Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4:669–679

    PubMed  CAS  Google Scholar 

  34. Mujumdar N, Mackenzie TN, Dudeja V et al (2010) Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139:598–608

    Article  PubMed  CAS  Google Scholar 

  35. Bonapace L, Bornhauser BC, Schmitz M et al (2010) Induction of autophagy-dependent necrosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 120:1310–1323

    Article  PubMed  CAS  Google Scholar 

  36. Dalby KN, Takedareli I, Lopez-Berestein G, Ozpolat B (2010) Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6:322–329

    Article  PubMed  CAS  Google Scholar 

  37. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8. A crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900

    Article  PubMed  CAS  Google Scholar 

  38. Yang Y, Xing D, Zhou F, Chen Q (2010) Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3. Biochem Biophys Rres Commun 395:190–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yasuko Moriyama for her technical assistance. This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 18591449 to M.H. and no. 23701074 to N.H.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Harada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inao, T., Harashima, N., Monma, H. et al. Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Res Treat 134, 89–100 (2012). https://doi.org/10.1007/s10549-011-1930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1930-3

Keywords

Navigation