Skip to main content

Advertisement

Log in

Polymorphisms in cycloxygenase-2 gene and breast cancer prognosis: association between PTGS2 haplotypes and histopathological features

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 (COX-2) overexpression is associated with worse prognosis in breast cancer. COX-2 is encoded by a polymorphic gene, called PTGS2, and its expression may be genetically influenced. In this article, we investigate the association between PTGS2 haplotypes and histopathological parameters with prognostic value on the clinical outcome of breast cancer. The study involved 606 women under current treatment for non-metastatic breast cancer. Patients were genotyped for rs689465, rs689466, rs20417, and rs5275, and their haplotypes were inferred. The distribution of PTGS2 genotypes and haplotypes was evaluated according to histopathological categorical groups used for prognostic determination of low/intermediate versus high risk of tumor recurrence. Our results indicate positive associations between variant genotypes of rs689465 and estrogen receptor negativity (OR: 1.59, 95% CI: 1.04–2.44, P: 0.02) or HER2 positivity (OR: 1.79, 95% CI: 1.00–3.18, P: 0.03), and between variant genotypes of rs20417 and estrogen receptor negativity (OR: 1.75, 95% CI: 1.15–2.57, P: 0.005), progesterone receptor negativity (OR: 1.56, 95% CI: 1.09–2.22, P: 0.01) or HER2 positivity (OR: 1.80, 95% CI: 1.04–3.13, P: 0.02). In contrast, variant genotypes of rs689466 are negatively associated with estrogen receptor negativity (OR: 0.57, 95% CI: 0.33–0.98, P: 0.03). A total of eight haplotypes were inferred, and there was a significant difference in their distribution as a function of tumor size (P: 0.011), estrogen receptor status (P: 0.018), and HER2 status (P: 0.025). PTGS2 haplotype *7 (formed by rs689465G, rs689466A, rs20417C, and rs5275T) is positively associated with higher tumor size (OR: 3.72, 95% CI: 1.19–11.22, P: 0.006), estrogen receptor negativity (OR: 2.43, 95% CI: 0.97–5.98, P: 0.032), progesterone receptor negativity (OR: 2.58, 95% CI: 1.05–6.39, P: 0.02), and HER2 positivity (OR: 4.17, 95% CI: 1.19–14.44, P: 0.007). Our results suggest that PTGS2 haplotype *7 may contribute to higher growth of untreated breast cancer and that PTGS2 haplotypes need to be considered in the characterization of breast cancer prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  PubMed  CAS  Google Scholar 

  2. Hayes DF, Isaacs C, Stearns V (2001) Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 6:375–392

    Article  PubMed  CAS  Google Scholar 

  3. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Article  PubMed  CAS  Google Scholar 

  4. Harris RE, Chlebowski RT, Jackson RD et al (2003) Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Res 63:6096–6101

    PubMed  CAS  Google Scholar 

  5. Khuder SA, Mutgi AB (2001) Breast cancer and NSAID use: a meta-analysis. Br J Cancer 84:1188–1192

    Article  PubMed  CAS  Google Scholar 

  6. Papafili A, Hill MR, Brull DJ et al (2002) Common promoter variant in cyclooxygenase-2 repress gene expression. Arterioscler Thromb Vasc Biol 22:1631–1636

    Article  PubMed  CAS  Google Scholar 

  7. Zhang X, Miao X, Tan W et al (2005) Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129:565–576

    PubMed  CAS  Google Scholar 

  8. Caput D, Beutler B, Hartog K et al (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of RNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674

    Article  PubMed  CAS  Google Scholar 

  9. Di Marco S, Hel Z, Lachance C, Furneaux H, Radzioch D (2001) Polymorphism in the 3′-untranslated region of TNFα mRNA impairs binding of the posttranscriptional regulatory protein HuR to TNFα mRNA. Nucleic Acid Res 29:863–871

    Article  PubMed  Google Scholar 

  10. Kristinsson J, Westerveld PV, Rene HM et al (2009) Cyclooxygenase-2 polymorphisms and the risk of esophageal adeno- or squamous cell carcinoma. World J Gastroenterol 15:3493–3497

    Article  PubMed  CAS  Google Scholar 

  11. Upadhyaya R, Jain M, Kumarb S, Ghoshalc UC, Mittala B (2009) Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma. Mutat Res 663:52–59

    Article  Google Scholar 

  12. Hou L, Grillo P, Zhu ZZ et al (2007) COX1 and COX2 polymorphisms and gastric cancer risk in a Polish population. Anticancer Res 27:4243–4247

    PubMed  CAS  Google Scholar 

  13. Liu F, Pan K, Zhang X et al (2006) Genetic variants in cyclooxygenase-2: expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology 130:1975–1984

    Article  PubMed  CAS  Google Scholar 

  14. Panguluri RCK, Long LO, Chen W et al (2004) COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25:961–966

    Article  PubMed  CAS  Google Scholar 

  15. Shahedi K, Lindström S, Zheng SL et al (2006) Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int J Cancer 119:668–672

    Article  PubMed  CAS  Google Scholar 

  16. Cheng I, Liu X, Plummer SJ et al (2007) COX-2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br J Cancer 97:557–561

    Article  PubMed  CAS  Google Scholar 

  17. Danforth KN, Hayes RB, Rodriguez C et al (2008) Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case-control studies. Carcinogenesis 29:568–572

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Dhakal IB, Lang NP, Kadlubar FF (2010) Polymorphisms in inflammatory genes, plasma antioxidants, and prostate cancer risk. Cancer Causes Control 21:1437–1444

    Article  PubMed  Google Scholar 

  19. Cox DG, Pontes C, Guino E et al (2004) Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer 91:339–343

    PubMed  CAS  Google Scholar 

  20. Ali IU, Luke BT, Dean M, Greenwald P (2005) Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma. Br J Cancer 93:953–959

    Article  PubMed  CAS  Google Scholar 

  21. Ulrich CM, Whitton J, Yu JH et al (2005) PTGS2 (COX-2)-765G > C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti inflammatory drugs. Cancer Epidemiol Biomarkers Prev 14:616–619

    Article  PubMed  CAS  Google Scholar 

  22. Tan W, Wu J, Zhang X et al (2007) Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. Carcinogenesis 28:1197–1201

    Article  PubMed  CAS  Google Scholar 

  23. Campa D, Zienolddiny S, Maggini V et al (2004) Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 25:229–235

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen M, Autrup H, Tjonneland A, Overvad K, Raaschou-Nielsen O et al (2005) A genetic polymorphism in prostaglandin synthase 2 (8473, T/C) and the risk of lung cancer. Cancer Lett 226:49–54

    Article  PubMed  CAS  Google Scholar 

  25. Moorman PG, Sesay J, Nwosu V et al (2005) Cyclooxygenase 2 polymorphism (Val511Ala), nonsteroidal anti-inflammatory drug use and breast cancer in African American women. Cancer Epidemiol Biomarkers Prev 14:3013–3014

    Article  PubMed  CAS  Google Scholar 

  26. Shen J, Gammon MD, Terry MB et al (2006) Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Res. doi:10.1186/bcr1629

  27. Langsenlehner U, Yazdani-Biuki B, Eder T et al (2006) The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin Cancer Res 12:1392–1394

    Article  PubMed  CAS  Google Scholar 

  28. Gallicchio L, Mcsorley MA, Newschaffer CJ et al (2006) Nonsteroidal antiinflammatory drugs, cyclooxygenase polymorphisms, and the risk of developing breast carcinoma among women with benign breast disease. Cancer 106:1443–1452

    Article  PubMed  CAS  Google Scholar 

  29. Cox DG, Buring J, Hankinson SE, Hunter DJ (2007) A polymorphism in the 3′untranslated region of the gene encoding prostaglandin endoperoxide synthase 2 is not associated with an increase in breast cancer risk: a nested case-control study. Breast Cancer Res. doi:10.1186/bcr1635

  30. Abraham JE, Harrington P, Driver KE et al (2009) Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clin Cancer Res 15:2181–2191

    Article  PubMed  CAS  Google Scholar 

  31. Li F, Ren GS, Li HY et al (2009) A novel single nucleotide polymorphism of the cyclooxygenase-2 gene associated with breast cancer. Clin Oncol 21:302–305

    Article  CAS  Google Scholar 

  32. Dossus L, Kaaks R, Canzian F et al (2009) PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the breast and prostate cancer cohort consortium (BPC3). Carcinogenesis 31:455–461

    Article  PubMed  Google Scholar 

  33. Piranda DN, Festa-Vasconcellos JS, Murta L, Bergmann A, Vianna-Jorge R (2010) Polymorphisms in regulatory regions of Cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study. BMC Cancer. doi:10.1186/1471-2407-10-613

  34. Brasky TM, Bonner MR, Moysich KB et al (2011) Genetic variants in COX2, non-steroidal anti-inflammatory drugs and breast cancer risk: the Western New York Exposures and Breast Cancer Study. Breast Cancer Res Treat 126:157–165

    Article  PubMed  CAS  Google Scholar 

  35. Ke-Da Yu, Chen Ao-Xiang, Yang Chen et al (2010) Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:251–257

    Article  Google Scholar 

  36. Zhu W, Wei BB, Shan X, Liu P (2010) 765G/C and 8473T/C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case–control studies. Mol Biol Rep 37:277–288

    Article  PubMed  CAS  Google Scholar 

  37. Lester SC, Bose S, Chen YY et al (2009) Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med 133:1515–1538

    PubMed  Google Scholar 

  38. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. The value of histological grades in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  40. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM (2000) Posttranscriptional control of cyclooxygenase-2 gene expression. J Biol Chem 275(16):11750–11757

    Article  PubMed  CAS  Google Scholar 

  41. Szczeklik W, Sanak M, Szczeklik A (2004) Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial Asthma. J Allergy Clin Immunol 114(2):248–253

    Article  PubMed  CAS  Google Scholar 

  42. Moore AE, Young LE, Dixon DA (2011) A common single-nucleotide polymorphism in cyclooxygenase-2 disrupts microRNA-mediated regulation. Oncogene. doi: 10.1038/onc.2011.349

  43. Gangwar R, Mandhani A, Mittal RD (2011) Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for urinary bladder cancer in North India. Surgery 149:126–134

    Article  PubMed  Google Scholar 

  44. Sanak M, Szczeklik W, Szczeklik A (2005) Association of COX-2 gene haplotypes with prostaglandins production in bronchial asthma. J Allergy Clin Immunol 116:221–223

    Article  PubMed  CAS  Google Scholar 

  45. Lari SA, Kuerer HM (2011) Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer 2:232–261

    Article  PubMed  Google Scholar 

  46. Wright C, Angus B, Nicholson S et al (1989) Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res 49:2087–2090

    PubMed  CAS  Google Scholar 

  47. Borg A, Tandon AK, Sigurdsson H et al (1990) HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 50:4332–4337

    PubMed  CAS  Google Scholar 

  48. Toikkanen S, Helin H, Isola J, Joensuu H (1992) Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30 year follow-up. J Clin Oncol 7:1044–1048

    Google Scholar 

  49. Gerger A, Renner W, Langsenlehner T et al (2010) Association of interleukin-10 gene variation with breast cancer prognosis. Breast Cancer Res Treat. 119:701–705

    Article  PubMed  CAS  Google Scholar 

  50. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  51. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  Google Scholar 

  52. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq474522/2010-5), from Fundação Carlos Chagas Filho de Amparo à Pesquisa no Rio de Janeiro (FAPERJ), and from INCT para Controle do Câncer (CNPq 573806/2008-0; FAPERJ E26/170.026/2008). JSFV, DNP, and VIB are graduate students and received a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), LMA is an undergraduate student, with a scholarship from FAPERJ. We thank Dr. Guilherme Suarez-Kurtz for the use of laboratory facilities, and the personnel from the Breast Cancer Hospital in the Brazilian National Cancer Institute, for logistic support.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Vianna-Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Festa-Vasconcellos, J.S., Piranda, D.N., Amaral, L.M. et al. Polymorphisms in cycloxygenase-2 gene and breast cancer prognosis: association between PTGS2 haplotypes and histopathological features. Breast Cancer Res Treat 132, 251–258 (2012). https://doi.org/10.1007/s10549-011-1828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1828-0

Keywords

Navigation