Skip to main content

Advertisement

Log in

Epigenetic silencing of the tumor suppressor klotho in human breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Klotho is a single pass transmembrane protein, associated with premature aging. We identified tumor suppressor activities for klotho, associated with reduced expression in breast cancer. We now aimed to analyze klotho expression in early stages of breast tumorigenesis and elucidate mechanisms leading to klotho silencing in breast tumors. We studied klotho expression, using immunohistochemistry, and found high klotho expression in all normal and mild hyperplasia samples, whereas reduced expression was associated with moderate and atypical ductal hyperplasia. Promoter methylation and histone deacetylation were studied as possible mechanisms for klotho silencing. Using bisulfite sequencing, and methylation-specific PCR, we identified KLOTHO promoter methylation in five breast cancer cell lines and in hyperplastic MCF-12A cells, but not in the non-tumorous mammary cell line HB2. Importantly, methylation status inversely correlated with klotho mRNA levels, and treatment of breast caner cells with 5-aza-2-deoxycytidine elevated klotho expression by up to 150-fold. KLOTHO promoter methylation was detected in 8/23 of breast cancer samples but not in normal breast samples. Chromatin immunoprecipitation revealed that in HB2 KLOTHO promoter was enriched with AcH3K9; however, in breast cancer cells, H3K9 was deacetylated, and treatment with the histone deacetylase inhibitor suberoylanilide bishydroxamide (SAHA) restored H3K9 acetylation. Taken together, these data indicate loss of klotho expression as an early event in breast cancer development, and suggest a role for DNA methylation and histone deacetylation in klotho silencing. Klotho expression and methylation may, therefore, serve as early markers for breast tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  PubMed  CAS  Google Scholar 

  2. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  3. Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima Y (2000) Molecular cloning and expression analyses of mouse [beta]klotho, which encodes a novel Klotho family protein. Mech Develop 98:115–119

    Article  CAS  Google Scholar 

  4. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  PubMed  CAS  Google Scholar 

  5. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Letters 424:6–10

    Article  PubMed  CAS  Google Scholar 

  6. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters 565:143–147

    Article  PubMed  CAS  Google Scholar 

  7. Chen C-D, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci 104:19796–19801

    Article  PubMed  CAS  Google Scholar 

  8. Ohyama Y, Kurabayashi M, Masuda H, Nakamura T, Aihara Y, Kaname T, Suga T, Arai M, Aizawa H, Matsumura Y et al (1998) Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 251:920–925

    Article  PubMed  CAS  Google Scholar 

  9. Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang C-L (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci 105:9805–9810

    Article  PubMed  CAS  Google Scholar 

  10. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu M-C, Moe OW et al (2006) Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  Google Scholar 

  11. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  12. Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B (2005) Diabetes mellitus and breast cancer. Lancet Oncol 6:103–111

    Article  PubMed  CAS  Google Scholar 

  13. Yee D (2006) Targeting insulin-like growth factor pathways. Br J Cancer 94:465–468

    Article  PubMed  CAS  Google Scholar 

  14. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, Kuro-o M, Karlan B, Kaufman B, Koeffler HP et al (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094–7105

    Article  PubMed  CAS  Google Scholar 

  15. Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, Kuro OM, Koeffler HP, Catane R, Freedman LS et al (2010) Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene 29:26–33

    Article  PubMed  CAS  Google Scholar 

  16. Chen B, Wang X, Zhao W, Wu J (2010) Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res 29:99

    Article  PubMed  Google Scholar 

  17. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N et al (2011) Klotho inhibits transforming growth factor-{beta}1 (TGF-{beta}1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665

    Article  PubMed  CAS  Google Scholar 

  18. Lee J, Jeong D-J, Kim J, Lee S, Park J-H, Chang B, Jung S-I, Yi L, Han Y, Yang Y et al (2010) The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Molecular Cancer 9:109–119

    Article  PubMed  Google Scholar 

  19. Lu L, Katsaros D, Wiley A, de la Longrais IA, Puopolo M, Yu H (2008) Klotho expression in epithelial ovarian cancer and its association with insulin-like growth factors and disease progression. Cancer Invest 26:185–192

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Chen B, Xu W, Liu S, Zhao W, Wu J (2011) Combined effects of klotho and soluble CD40 ligand on A549 lung cancer cells. Oncol Rep 25(5):1465–1472

    PubMed  CAS  Google Scholar 

  21. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  22. Lo P-K, Sukumar S (2008) Epigenomics and breast cancer. Pharmacogenomics 9:1879–1902

    Article  PubMed  CAS  Google Scholar 

  23. Wolf I, Bose S, Desmond J, Lin B, Williamson E, Karlan B, Koeffler H (2007) Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105:139–155

    Article  PubMed  CAS  Google Scholar 

  24. Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP (2007) FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 120:1013–1022

    Article  PubMed  CAS  Google Scholar 

  25. McShane L, Altman D, Sauerbrei W, Taube S, Gion M, Clark G (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  26. Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson Sm, Zhang X, Lin JC, Liang G, Jones PA, Tanay A (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci 105:12979–12984

    Article  PubMed  Google Scholar 

  27. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83:249–289

    Article  PubMed  CAS  Google Scholar 

  28. Wolf I, O’Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT, Tai H–H, Karlan BY, Koeffler HP (2006) 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 66:7818–7823

    Article  PubMed  CAS  Google Scholar 

  29. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci 95:3003–3007

    Article  PubMed  CAS  Google Scholar 

  30. Schnitt SJ (2003) Benign breast disease and breast cancer risk: morphology and beyond. Am J Surg Pathol 27:836–841

    Article  PubMed  Google Scholar 

  31. Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A et al (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidem Biomar 18:2694–2700

    Article  CAS  Google Scholar 

  32. Herman JG, Merlo A, Mao L, Lapidus RG, Issa J-PJ, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    PubMed  CAS  Google Scholar 

  33. Mancini DN, Rodenhiser DI, Ainsworth PJ, O’Malley FP, Singh SM, Xing W, Archer TK (1998) CpG methylation within the 5′ regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. Oncogene 16:1161–1169

    Article  PubMed  CAS  Google Scholar 

  34. Schutte M, Rozenblum E, Moskaluk CA, Guan X, Hoque AT, Hahn SA, da Costa LT, de Jong PJ, Kern SE (1995) An integrated high-resolution physical map of the DPC/BRCA2 region at chromosome 13q12. Cancer Res 55:4570–4574

    PubMed  CAS  Google Scholar 

  35. Geck P, Maffini MV, Szelei J, Sonnenschein C, Soto AM (2000) Androgen-induced proliferative quiescence in prostate cancer cells: the role of AS3 as its mediator. Proc Natl Acad Sci 97:10185–10190

    Article  PubMed  CAS  Google Scholar 

  36. Schott DR, Chang JN, Deng G, Kurisu W, Kuo WL, Gray J, Smith HS (1994) A candidate tumor suppressor gene in human breast cancers. Cancer Res 54:1393–1396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by The Riva and Joel Koschitzky Fund for Breast Cancer Research at the Sheba Medical Center; the Chief Scientist Office of the Ministry of Health, Israel (grant no. 4055_3 to IW); the Israel Cancer Association Research Grant; The Israel Science Foundation (to I.W.); the “Talpiut” Sheba Career Development Award; and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tami Rubinek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinek, T., Shulman, M., Israeli, S. et al. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat 133, 649–657 (2012). https://doi.org/10.1007/s10549-011-1824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1824-4

Keywords

Navigation