Skip to main content

Advertisement

Log in

Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast Cancer 2 gene (BRCA2) mutation carriers have a 45% chance of developing breast cancer and a 11% risk of developing ovarian cancer by the age of 70. While hundreds of BRCA2-truncating mutations have been associated with an increased cancer risk in carriers, the contribution of unclassified variants (UCVs) to cancer risk remains largely undefined. BRCA2-defective cells show a high degree of chromosome instability. Although a functional assay based on the BRCA2 capability to stimulate DSB-induced homologous recombination (HR) as a way to classify UCVs has been proposed, so far no data are available concerning the effect of BRCA2 UCVs on spontaneous HR. In this study, we proposed a novel functional HR-based assay that determines the effect of the transient overexpression of the BRCA2 variant on spontaneous HR. This assay will help one in the difficult task of classifying UCVs, and it will give more information on how BRCA2 may induce genome instability and on the basic mechanism of BRCA2-induced tumourigenesis. We chose 11 BRCA2 UCVs not previously described or classified in other articles, and distributed along the entire BRCA2-coding region. They are as follows: G173V, D191V, S286P, M927V, T1011R, L1019V, N1878K, S2006R, R2108C, G2353R and V3091I. Basically, because the expression of BRCA2wt and the neutral variants did not increase spontaneous HR, we classified the variants G173V, S286P, M927V, T1011R and L1019V as HR-negative and presumed that they were not pathogenic. The HR-positive variants, D191V, N1878K, S2006R, R2108C, G2353R, and V3091I, which increased HR as much as the cancer-associated variant G2748D, could probably be classified as pathogenic. We observed that all our variants in the C-terminus of the protein behaved differently from the wt, suggesting a role for this protein region in spontaneous HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71

    Article  PubMed  CAS  Google Scholar 

  2. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265(5181):2088–2090

    Article  PubMed  CAS  Google Scholar 

  3. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjakoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130

    Article  PubMed  CAS  Google Scholar 

  4. Rahman N, Stratton MR (1998) The genetics of breast cancer susceptibility. Annu Rev Genet 32:95–121

    Article  PubMed  CAS  Google Scholar 

  5. Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272(51):31941–31944

    Article  PubMed  CAS  Google Scholar 

  6. Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH (2005) BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci USA 102(24):8537–8542

    Article  PubMed  CAS  Google Scholar 

  7. Powell SN, Willers H, Xia F (2002) BRCA2 keeps Rad51 in line. High-fidelity homologous recombination prevents breast and ovarian cancer? Mol Cell 10(6):1262–1263

    Article  PubMed  CAS  Google Scholar 

  8. Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BA, Venkitaraman AR (1998) Involvement of Brca2 in DNA repair. Mol Cell 1(3):347–357

    Article  PubMed  CAS  Google Scholar 

  9. van der Zwet KM, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, Jaspers NG, Sharan SK, Kanaar R, Zdzienicka MZ (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22(2):669–679

    Article  Google Scholar 

  10. Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, Griffin C, Thacker J, Ashworth A (2001) Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 20(17):4704–4716

    Article  PubMed  CAS  Google Scholar 

  11. Wu K, Hinson SR, Ohashi A, Farrugia D, Wendt P, Tavtigian SV, Deffenbaugh A, Goldgar D, Couch FJ (2005) Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. Cancer Res 65(2):417–426

    Article  PubMed  CAS  Google Scholar 

  12. Farrugia DJ, Agarwal MK, Pankratz VS, Deffenbaugh AM, Pruss D, Frye C, Wadum L, Johnson K, Mentlick J, Tavtigian SV, Goldgar DE, Couch FJ (2008) Functional assays for classification of BRCA2 variants of uncertain significance. Cancer Res 68(9):3523–3531

    Article  PubMed  CAS  Google Scholar 

  13. Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro AN, Iversen ES, Couch FJ, Goldgar DE (2007) A systematic genetic assessment of 1, 433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81(5):873–883

    Article  PubMed  CAS  Google Scholar 

  14. Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R, Southgate C, Singh R, Falconer A, Dearnaley DP, Ardern-Jones A, Murkin A, Dowe A, Kelly J, Williams S, Oram R, Stevens M, Teare DM, Ponder BA, Gayther SA, Easton DF, Eeles RA (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72(1):1–12

    Article  PubMed  CAS  Google Scholar 

  15. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  16. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  PubMed  CAS  Google Scholar 

  17. Tsujimura T, Maher VM, Godwin AR, Liskay RM, McCormick JJ (1990) Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells. Proc Natl Acad Sci USA 87(4):1566–1570

    Article  PubMed  CAS  Google Scholar 

  18. Ciotta C, Ceccotti S, Aquilina G, Humbert O, Palombo F, Jiricny J, Bignami M (1998) Increased somatic recombination in methylation tolerant human cells with defective DNA mismatch repair. J Mol Biol 276(4):705–719

    Article  PubMed  CAS  Google Scholar 

  19. Galli A, Schiestl RH (1995) On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol Gen Genet 248(3):301–310

    Article  PubMed  CAS  Google Scholar 

  20. Guidugli L, Rugani C, Lombardi G, Aretini P, Galli A, Caligo MA (2010) A recombination-based method to characterize human BRCA1 missense variants. Breast Cancer Res Treat 125(1):265–272

    Article  PubMed  Google Scholar 

  21. Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS (2008) Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 29(11):1265–1272

    Article  PubMed  Google Scholar 

  22. Purnomosari D, Aryandono T, Setiaji K, Nugraha SB, Pals G, van Diest PJ (2006) Comparison of multiplex ligation dependent probe amplification to immunohistochemistry for assessing HER-2/neu amplification in invasive breast cancer. Biotech Histochem 81(2–3):79–85

    Google Scholar 

  23. Claes K, Poppe B, Machackova E, Coene I, Foretova L, De Paepe A, Messiaen L (2003) Differentiating pathogenic mutations from polymorphic alterations in the splice sites of BRCA1 and BRCA2. Genes Chromosomes Cancer 37(3):314–320

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from ‘Fondazione Cassa di Risparmio di Pisa’ and from ‘AIRC regional Grant 2005– 2007’ to M.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Adelaide Caligo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balia, C., Galli, A. & Caligo, M.A. Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells. Breast Cancer Res Treat 129, 1001–1009 (2011). https://doi.org/10.1007/s10549-011-1607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1607-y

Keywords

Navigation