Skip to main content

Advertisement

Log in

Cancer predisposing BARD1 mutations in breast–ovarian cancer families

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The breast cancer susceptibility gene BARD1 (BRCA1-associated RING domain protein, MIM# 601593) acts with BRCA1 in DNA double-strand break (DSB) repair and also in apoptosis initiation. We screened 109 BRCA1/2 negative high-risk breast and/or ovarian cancer patients from North-Eastern Poland for BARD1 germline mutations using a combination of denaturing high-performance liquid chromatography and direct sequencing. We identified 16 different BARD1 sequence variants, five of which are novel. Three of them were suspected to be pathogenic, including a protein truncating nonsense mutation (c.1690C>T, p.Gln564X), a splice mutation (c.1315-2A>G) resulting in exon 5 skipping, and a silent change (c.1977A>G) which alters several exonic splicing enhancer motifs in exon 10 and results in a transcript lacking exons 2–9. Our findings suggest that BARD1 mutations may be regarded as cancer risk alleles and warrant further investigation to determine their actual contribution to non-BRCA1/2 breast and ovarian cancer families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antoniou AC, Pharoah PD, McMullan G, Day NE, Ponder BA, Easton D (2001) Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol 21:1–18. doi:10.1002/gepi.1014

    Article  PubMed  CAS  Google Scholar 

  2. Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83. doi:10.1038/sj.bjc.6600008

    Article  PubMed  CAS  Google Scholar 

  3. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  PubMed  CAS  Google Scholar 

  4. Ars E, Kruyer H, Gaona A, Serra E, Lazaro C, Estivill X (1999) Prenatal diagnosis of sporadic neurofibromatosis type 1 (NF1) by RNA and DNA analysis of a splicing mutation. Prenat Diagn 19:739–742

    Article  PubMed  CAS  Google Scholar 

  5. Ayi TC, Tsan JT, Hwang LY, Bowcock AM, Baer R (1998) Conservation of function and primary structure in the BRCA1-associated RING domain (BARD1) protein. Oncogene 17:2143–2148. doi:10.1038/sj.onc.1202123

    Article  PubMed  CAS  Google Scholar 

  6. Baralle D, Baralle M (2005) Splicing in action: assessing disease causing sequence changes. J Med Genet 42:737–748. doi:10.1136/jmg.2004.029538

    Article  PubMed  CAS  Google Scholar 

  7. Baralle M, Skoko N, Knezevich A, De Conti L, Motti D, Bhuvanagiri M, Baralle D, Buratti E, Baralle FE (2006) NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett 580:4449–4456. doi:10.1016/j.febslet.2006.07.018

    Article  PubMed  CAS  Google Scholar 

  8. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160

    Article  PubMed  CAS  Google Scholar 

  9. Caputi M, Kendzior RJ Jr, Beemon KL (2002) A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer. Genes Dev 16:1754–1759. doi:10.1101/gad.997502

    Article  PubMed  CAS  Google Scholar 

  10. Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384. doi:10.1038/ng854

    Article  PubMed  CAS  Google Scholar 

  11. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  12. De Brakeleer S, De Greve J, Loris R, Janin N, Lissens W, Sermijn E, Teugels E (2010) Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum Mutat 31:E1175–E1185. doi:10.1002/humu.21200

    Article  PubMed  Google Scholar 

  13. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12. doi:10.1002/(sici)1098-1004(200001)15:1<7:aid-humu4>3.0.co;2-n

    Article  Google Scholar 

  14. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67. doi:10.1093/nar/gkp215

    Article  PubMed  Google Scholar 

  15. Easton DF (1999) How many more breast cancer predisposition genes are there? Breast Cancer Res 1:14–17

    Article  PubMed  CAS  Google Scholar 

  16. Erkko H, Xia B, Nikkila J, Schleutker J, Syrjakoski K, Mannermaa A, Kallioniemi A, Pylkas K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319. doi:10.1038/nature05609

    Article  PubMed  CAS  Google Scholar 

  17. Fackenthal JD, Cartegni L, Krainer AR, Olopade OI (2002) BRCA2 T2722R is a deleterious allele that causes exon skipping. Am J Hum Genet 71:625–631. doi:10.1086/342192

    Article  PubMed  CAS  Google Scholar 

  18. Fox D 3rd, Le Trong I, Rajagopal P, Brzovic PS, Stenkamp RE, Klevit RE (2008) Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences. J Biol Chem 283:21179–21186. doi:10.1074/jbc.M802333200

    Article  PubMed  CAS  Google Scholar 

  19. Ghimenti C, Sensi E, Presciuttini S, Brunetti IM, Conte P, Bevilacqua G, Caligo MA (2002) Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer 33:235–242

    Article  PubMed  CAS  Google Scholar 

  20. Gorringe KL, Choong DY, Visvader JE, Lindeman GJ, Campbell IG (2008) BARD1 variants are not associated with breast cancer risk in Australian familial breast cancer. Breast Cancer Res Treat 111:505–509. doi:10.1007/s10549-007-9799-x

    Article  PubMed  CAS  Google Scholar 

  21. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452

    Article  PubMed  CAS  Google Scholar 

  22. Hedenfalk IA, Ringner M, Trent JM, Borg A (2002) Gene expression in inherited breast cancer. Adv Cancer Res 84:1–34

    Article  PubMed  CAS  Google Scholar 

  23. Heikkinen K, Karppinen SM, Soini Y, Makinen M, Winqvist R (2003) Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet 40:e131

    Article  PubMed  CAS  Google Scholar 

  24. Irminger-Finger I, Leung WC (2002) BRCA1-dependent and independent functions of BARD1. Int J Biochem Cell Biol 34:582–587

    Article  PubMed  CAS  Google Scholar 

  25. Ishitobi M, Miyoshi Y, Hasegawa S, Egawa C, Tamaki Y, Monden M, Noguchi S (2003) Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett 200:1–7

    Article  PubMed  CAS  Google Scholar 

  26. Jakubowska A, Cybulski C, Szymanska A, Huzarski T, Byrski T, Gronwald J, Debniak T, Gorski B, Kowalska E, Narod SA, Lubinski J (2008) BARD1 and breast cancer in Poland. Breast Cancer Res Treat 107:119–122. doi:10.1007/s10549-007-9537-4

    Article  PubMed  CAS  Google Scholar 

  27. Jefford CE, Feki A, Harb J, Krause KH, Irminger-Finger I (2004) Nuclear-cytoplasmic translocation of BARD1 is linked to its apoptotic activity. Oncogene 23:3509–3520. doi:10.1038/sj.onc.1207427

    Article  PubMed  CAS  Google Scholar 

  28. Karppinen SM, Heikkinen K, Rapakko K, Winqvist R (2004) Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. J Med Genet 41:e114. doi:10.1136/jmg.2004.020669

    Article  PubMed  Google Scholar 

  29. Lewis AG, Flanagan J, Marsh A, Pupo GM, Mann G, Spurdle AB, Lindeman GJ, Visvader JE, Brown MA, Chenevix-Trench G (2005) Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Res 7:R1005–R1016. doi:10.1186/bcr1336

    Article  PubMed  CAS  Google Scholar 

  30. Li L, Cohen M, Wu J, Sow MH, Nikolic B, Bischof P, Irminger-Finger I (2007) Identification of BARD1 splice-isoforms involved in human trophoblast invasion. Int J Biochem Cell Biol 39:1659–1672. doi:10.1016/j.biocel.2007.04.018

    Article  PubMed  CAS  Google Scholar 

  31. Li L, Ryser S, Dizin E, Pils D, Krainer M, Jefford CE, Bertoni F, Zeillinger R, Irminger-Finger I (2007) Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer Res 67:11876–11885. doi:10.1158/0008-5472.CAN-07-2370

    Article  PubMed  CAS  Google Scholar 

  32. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27:55–58. doi:10.1038/83762

    PubMed  CAS  Google Scholar 

  33. Marquis ST, Rajan JV, Wynshaw-Boris A, Xu J, Yin GY, Abel KJ, Weber BL, Chodosh LA (1995) The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26. doi:10.1038/ng0995-17

    Article  PubMed  CAS  Google Scholar 

  34. McCarthy EE, Celebi JT, Baer R, Ludwig T (2003) Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol 23:5056–5063

    Article  PubMed  CAS  Google Scholar 

  35. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton D, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber B, Rahman N, Stratton MR (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59. doi:10.1038/ng879

    Article  PubMed  CAS  Google Scholar 

  36. Meza JE, Brzovic PS, King MC, Klevit RE (1999) Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J Biol Chem 274:5659–5665

    Article  PubMed  CAS  Google Scholar 

  37. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  38. Mosor M, Ziolkowska-Suchanek I, Roznowski K, Baranowska M, Januszkiewicz-Lewandowska D, Nowak J (2010) RAD50 gene mutations are not likely a risk factor for breast cancer in Poland. Breast Cancer Res Treat 123:607–609. doi:10.1007/s10549-010-0992-y

    Article  PubMed  Google Scholar 

  39. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874. doi:10.1101/gr.176601

    Article  PubMed  CAS  Google Scholar 

  40. Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–36. doi:10.1038/ng853

    Article  PubMed  CAS  Google Scholar 

  41. Pharoah PD, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358:2796–2803. doi:10.1056/NEJMsa0708739

    Article  PubMed  CAS  Google Scholar 

  42. Ponder BA (2001) Cancer genetics. Nature 411:336–341. doi:10.1038/35077207

    Article  PubMed  CAS  Google Scholar 

  43. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167. doi:10.1038/ng1959

    Article  PubMed  CAS  Google Scholar 

  44. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900

    Article  PubMed  CAS  Google Scholar 

  45. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4:311–323

    Article  PubMed  CAS  Google Scholar 

  46. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38:873–875. doi:10.1038/ng1837

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez JA, Schuchner S, Au WW, Fabbro M, Henderson BR (2004) Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1. Oncogene 23:1809–1820. doi:10.1038/sj.onc.1207302

    Article  PubMed  CAS  Google Scholar 

  48. Sabatier R, Adelaide J, Finetti P, Ferrari A, Huiart L, Sobol H, Chaffanet M, Birnbaum D, Bertucci F (2010) BARD1 homozygous deletion, a possible alternative to BRCA1 mutation in basal breast cancer. Genes Chromosomes Cancer 49:1143–1151. doi:10.1002/gcc.20822

    Article  PubMed  CAS  Google Scholar 

  49. Sauer MK, Andrulis IL (2005) Identification and characterization of missense alterations in the BRCA1 associated RING domain (BARD1) gene in breast and ovarian cancer. J Med Genet 42:633–638. doi:10.1136/jmg.2004.030049

    Article  PubMed  CAS  Google Scholar 

  50. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241. doi:10.1038/ng1902

    Article  PubMed  CAS  Google Scholar 

  51. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316

    Article  PubMed  CAS  Google Scholar 

  52. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15:2490–2508. doi:10.1093/hmg/ddl171

    Article  PubMed  CAS  Google Scholar 

  53. Steffen J, Varon R, Mosor M, Maneva G, Maurer M, Stumm M, Nowakowska D, Rubach M, Kosakowska E, Ruka W, Nowecki Z, Rutkowski P, Demkow T, Sadowska M, Bidzinski M, Gawrychowski K, Sperling K (2004) Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer 111:67–71. doi:10.1002/ijc.20239

    Article  PubMed  CAS  Google Scholar 

  54. Steffen J, Nowakowska D, Niwinska A, Czapczak D, Kluska A, Piatkowska M, Wisniewska A, Paszko Z (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119:472–475. doi:10.1002/ijc.21853

    Article  PubMed  CAS  Google Scholar 

  55. Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836. doi:10.1056/nejm199112263252602

    Article  PubMed  CAS  Google Scholar 

  56. Szybka M, Zawlik I, Kulczycka D, Golanska E, Jesien E, Kupnicka D, Stawski R, Piaskowski S, Bieniek E, Zakrzewska M, Kordek R, Liberski PP, Rieske P (2008) Elimination of wild-type P53 mRNA in glioblastomas showing heterozygous mutations of P53. Br J Cancer 98:1431–1433. doi:10.1038/sj.bjc.6604258

    Article  PubMed  CAS  Google Scholar 

  57. Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631. doi:10.1086/302418

    Article  PubMed  CAS  Google Scholar 

  58. Thai TH, Du F, Tsan JT, Jin Y, Phung A, Spillman MA, Massa HF, Muller CY, Ashfaq R, Mathis JM, Miller DS, Trask BJ, Baer R, Bowcock AM (1998) Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet 7:195–202

    Article  PubMed  CAS  Google Scholar 

  59. Vahteristo P, Syrjakoski K, Heikkinen T, Eerola H, Aittomaki K, von Smitten K, Holli K, Blomqvist C, Kallioniemi OP, Nevanlinna H (2006) BARD1 variants Cys557Ser and Val507Met in breast cancer predisposition. Eur J Hum Genet 14:167–172. doi:10.1038/sj.ejhg.5201542

    Article  PubMed  CAS  Google Scholar 

  60. Walsh T, King MC (2007) Ten genes for inherited breast cancer. Cancer Cell 11:103–105. doi:10.1016/j.ccr.2007.01.010

    Article  PubMed  CAS  Google Scholar 

  61. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14:430–440. doi:10.1038/ng1296-430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The cooperation of all the patients and their families who participated in this study was invaluable. We thank to Rafal Dziadziuszko for help with editing the manuscript, Anna Stanislawska-Sachadyn and Bartosz Wasag for laboratory assistance. This study was supported by a grant from MNiSW: N401 164 31/3656 and N407 627740.

Conflicts of interest

None of the authors have any conflicts of interest to declare. Authors also do not have a financial relationship with any of the organizations that sponsored the research. Authors have full control of all primary data and agree to allow the journal to review the data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Ratajska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajska, M., Antoszewska, E., Piskorz, A. et al. Cancer predisposing BARD1 mutations in breast–ovarian cancer families. Breast Cancer Res Treat 131, 89–97 (2012). https://doi.org/10.1007/s10549-011-1403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1403-8

Keywords

Navigation