Skip to main content

Advertisement

Log in

Tumor angiogenesis as prognostic and predictive marker for chemotherapy dose-intensification efficacy in high-risk breast cancer patients within the WSG AM-01 trial

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The goal of this analysis was to characterize the survival impact of angiogenesis in the patients with high-risk breast cancer, particularly the predictive impact on benefit from dose intensification of adjuvant chemotherapy. Formalin-fixed tissue sample of 152 patients treated as part of the WSG AM-01 trial by either high-dose or conventional dose-dense chemotherapy were analyzed. Angiogenic activity was measured using microvessel count and vascular surface area (VSA) determined by the expression of vascular markers CD31 (n = 128) and CD105/endoglin (n = 130). Protein molecular breast cancer subclasses were analyzed by k-means clustering (k = 5). The univariate impact of factors on event-free (EFS) and overall survival (OS) was tested by log-rank statistics and quantified by univariate Cox analysis. Multivariate survival analysis included factors significant in univariate analysis, as well as interactions was performed for EFS. Both VSA/CD31 (P = 0.004) and VSA/CD105 (P = 0.003) were significantly higher among cases with increased Ki-67. A significant association with molecular subtypes was also found for VSA/CD105: in patients with basal-like/Her-2 subtypes, mean was 1.72 versus 1.24 in patients with other subtypes (P < 0.001). Elevated VSA/CD105 was associated with both significantly decreased EFS (P = 0.01) and OS (P = 0.02). Increased tumor size and positive Her-2 status were also prognostic for poorer EFS. The benefit of dose intensification for EFS was seen in those low-VSA/CD105 patients. The result was evident both in univariate and in multivariate survival analysis including all factors that were significant at the univariate level. Expression of angiogenesis markers may mirror or confer resistance to chemotherapy in the patients with breast cancer, particularly within the context of dose intensified chemotherapy. Highly angiogenic tumors may not derive sufficient benefit from dose intensification of chemotherapy alone. Our findings may serve as a rationale for further exploring anti-angiogenic treatment options in the patients with such highly angiogenic tumor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DD:

Dose-dense chemotherapy

HD:

High-dose chemotherapy

MMN:

Multiple marker negative

ER:

Estrogen receptor

PR:

Progesterone receptor

References

  1. Fisher B, Bauer M, Wickerham D et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 52(9):1551–1557

    Article  PubMed  CAS  Google Scholar 

  2. Gluz O, Nitz UA, Harbeck N et al (2008) Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM-01 trial. Ann Oncol 19(5):861–870

    Article  PubMed  CAS  Google Scholar 

  3. Kroger N, Milde-Langosch K, Riethdorf S et al (2006) Prognostic and predictive effects of immunohistochemical factors in high-risk primary breast cancer patients. Clin Cancer Res 12(1):159–168

    Article  PubMed  Google Scholar 

  4. Faneyte IF, Peterse JL, Van Tinteren H et al (2004) Predicting early failure after adjuvant chemotherapy in high-risk breast cancer patients with extensive lymph node involvement. Clin Cancer Res 10(13):4457–4463

    Article  PubMed  CAS  Google Scholar 

  5. Nitz U, Mohrmann S, Fischer J et al (2005) Comparison of rapidly cycled tandem high-dose chemotherapy plus peripheral-blood stem-cell support versus dose-dense conventional chemotherapy for adjuvant treatment of high-risk breast cancer: results of a multicentre phase III trial. Lancet 366(9501):1935–1944

    Article  PubMed  CAS  Google Scholar 

  6. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  7. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  8. Diallo-Danebrock R, Ting E, Gluz O et al (2007) Protein expression profiling in high-risk breast cancer patients treated with high-dose or conventional dose-dense chemotherapy. Clin Cancer Res 13(2):488–497

    Article  PubMed  CAS  Google Scholar 

  9. Hannemann J, Hannemann J, Kristel P et al (2006) Molecular subtypes of breast cancer and amplification of topoisomerase II alpha: predictive role in dose intensive adjuvant chemotherapy. Br J Cancer 95(10):1334–1341

    Article  PubMed  CAS  Google Scholar 

  10. Gluz O, Mengele K, Schmitt M et al (2009) Y-box-binding protein YB-1 identifies high-risk patients with primary breast cancer benefiting from rapidly cycled tandem high-dose adjuvant chemotherapy. J Clin Oncol 27(36):6144–6151

    Article  PubMed  CAS  Google Scholar 

  11. Gasparini G, Weidner N, Bevilacqua P et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12(3):454–466

    PubMed  CAS  Google Scholar 

  12. Heimann R, Ferguson D, Powers C et al (1996) Angiogenesis as a predictor of long-term survival for patients with node-negative breast cancer. J Natl Cancer Inst 88(23):1764–1769

    Article  PubMed  CAS  Google Scholar 

  13. Uzzan B, Nicolas P, Cucherat M et al (2004) Microvessel density as a prognostic factor in women with breast cancer. Cancer Res 64(9):2941–2955

    Article  PubMed  CAS  Google Scholar 

  14. Kumar S, Ghellal A, Li C et al (1999) Vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59(4):856–861

    PubMed  CAS  Google Scholar 

  15. Bodey B, Bodey BJ, Siegel S et al (1998) Over-expression of endoglin (CD105): a marker of breast carcinoma-induced neo-vascularization. Anticancer Res 18(5A):3621–3628

    PubMed  CAS  Google Scholar 

  16. Dallas NA, Samuel S, Xia L et al (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14(7):1931–1937

    Article  PubMed  CAS  Google Scholar 

  17. Li C, Gardy R, Seon BK et al (2003) Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br J Cancer 88(9):1424–1431

    Article  PubMed  CAS  Google Scholar 

  18. Fujita KC, Ewing MD, Chan YS et al (2009) Endoglin (CD105) as a urinary and serum marker of prostate cancer. Int J Cancer 124(3):664–669

    Article  PubMed  CAS  Google Scholar 

  19. Yao Y, Kubota T, Takeuchi H et al (2005) Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology 25(3):201–206

    Article  PubMed  Google Scholar 

  20. Nieto Y, Woods J, Nawaz F et al (2007) Prognostic analysis of tumour angiogenesis, determined by microvessel density and expression of vascular endothelial growth factor, in high-risk primary breast cancer patients treated with high-dose chemotherapy. Br J Cancer 97(3):391

    Article  PubMed  CAS  Google Scholar 

  21. Vermeulen P, Gasparini G, Fox S et al (1996) Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32(14):2474–2484

    Article  Google Scholar 

  22. Vermeulen PB, Gasparini G, Fox SB et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38(12):1564–1579

    Article  PubMed  CAS  Google Scholar 

  23. Weidner N, Semple J, Welch W et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  PubMed  CAS  Google Scholar 

  24. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97(16):1180–1184

    Article  PubMed  CAS  Google Scholar 

  25. Shipitsin M, Campbell L, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    Article  PubMed  CAS  Google Scholar 

  26. de Caestecker MP, Piek E, Roberts AB (2000) Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst 92(17):1388–1402

    Article  PubMed  Google Scholar 

  27. Li C, Hampson IN, Hampson L et al (2000) CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells. FASEB J 14(1):55–64

    PubMed  CAS  Google Scholar 

  28. Leek R (2001) The prognostic role of angiogenesis in breast cancer. Anticancer Res 21(6B):4325–4331

    PubMed  CAS  Google Scholar 

  29. Moebus V, Jackisch C, Lueck H-J et al (2010) Intense dose-dense sequential chemotherapy with epirubicin, paclitaxel, and cyclophosphamide compared with conventionally scheduled chemotherapy in high-risk primary breast cancer: mature results of an AGO phase III study. J Clin Oncol 28(17):2874–2880

    Article  PubMed  CAS  Google Scholar 

  30. Duff SE, Li C, Garland JM et al (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17(9):984–992

    Article  PubMed  CAS  Google Scholar 

  31. Dales J, Garcia S, Andrac L et al (2004) Prognostic significance of angiogenesis evaluated by CD105 expression compared to CD31 in 905 breast carcinomas: correlation with long-term patient outcome. Int J Oncol 24(5):1197–1204

    PubMed  Google Scholar 

  32. Chenggang L, Baoqiang G, Phillip BW et al (2000) Plasma levels of soluble CD105 correlate with metastasis in patients with breast cancer. Int J Cancer 89(2):122–126

    Article  Google Scholar 

  33. Vo M, Evans M, Leitzel K et al (2010) Elevated plasma endoglin (CD105) predicts decreased response and survival in a metastatic breast cancer trial of hormone therapy. Breast Cancer Res Treat 119(3):767–771

    Article  PubMed  CAS  Google Scholar 

  34. Beresford MJ, Harris AL, Ah-See M et al (2006) The relationship of the neo-angiogenic marker, endoglin, with response to neoadjuvant chemotherapy in breast cancer. Br J Cancer 95(12):1683–1688

    Article  PubMed  CAS  Google Scholar 

  35. Warrington K, Hillarby MC, Li C et al (2005) Functional role of CD105 in TGF-β1 signalling in murine and human endothelial cells. Anticancer Res 25(3B):1851–1864

    PubMed  CAS  Google Scholar 

  36. Zhu Y, Sun Y, Xie L et al (2003) Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke 34(10):2483–2488

    Article  PubMed  CAS  Google Scholar 

  37. Lopes N, Sousa B, Vieira D et al (2009) Vessel density assessed by endoglin expression in breast carcinomas with different expression profiles. Histopathology 55(5):594–599

    Article  PubMed  Google Scholar 

  38. Escorcia FE, Henke E, McDevitt MR et al (2010) Selective killing of tumor neovasculature paradoxically improves chemotherapy delivery to tumors. Cancer Res 70(22):9277–9286

    Article  PubMed  CAS  Google Scholar 

  39. Drevs J, Müller-Driver R, Wittig C et al (2002) PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 62(14):4015–4022

    PubMed  CAS  Google Scholar 

  40. Nam J-S, Terabe M, Mamura M et al (2008) An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68(10):3835–3843

    Article  PubMed  CAS  Google Scholar 

  41. She X, Matsuno F, Harada N et al (2004) Synergy between anti-endoglin (CD105) monoclonal antibodies and TGF-beta in suppression of growth of human endothelial cells. Int J Cancer 108(2):251–257

    Article  PubMed  CAS  Google Scholar 

  42. Uneda S, Toi H, Tsujie T et al (2009) Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer 125:1446–1453

    Article  PubMed  CAS  Google Scholar 

  43. Lee S-H, Mizutani N, Mizutani M et al (2006) Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol Immunother 55(12):1565–1574

    Article  PubMed  CAS  Google Scholar 

  44. O’Shaughnessy J, Miles D, Gray RJ et al (2010) A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). J Clin Oncol 28(suppl 15):1005 meeting abstracts

    Google Scholar 

  45. Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We very much appreciate the support of the contributing institutions by giving us access to WSG AM-01 patients’ archival tumor material. We thank the Jürgen-Manchot-Stiftung, Düsseldorf, Germany, for support of this research project. A. Gaumann was supported by a DFG grant GA1092/2-1. We are grateful to Martina Waeber and Matthias Hornberg and Rudolf Jung for excellent technical assistance. This publication contains data of the dissertation thesis of V. Artinger, E. Ehm, and H. Mendrik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gaumann.

Additional information

Oleg Gluz and Andreas Gaumann contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluz, O., Wild, P., Liedtke, C. et al. Tumor angiogenesis as prognostic and predictive marker for chemotherapy dose-intensification efficacy in high-risk breast cancer patients within the WSG AM-01 trial. Breast Cancer Res Treat 126, 643–651 (2011). https://doi.org/10.1007/s10549-011-1377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1377-6

Keywords

Navigation