Skip to main content

Advertisement

Log in

Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer mortality is frequently associated with metastatic disease. Metastasis models have shown adrenoceptor (AR) stimulation induces cell migration which is inhibited by adrenoceptor antagonist drugs. We investigated adrenoceptor protein expression in clinical breast tumours and its association with disease progression and prognosis. Immunohistochemistry on tissue microarrays was used to characterise α1b, α2c and β22 adrenoceptor protein expression in operable breast tumours. Associations with tumour-relevant biological markers and clinical outcome were statistically assessed. Strong α1b expression occurred in large high grade (P < 0.0001), HER2+ (P < 0.0001) or basal-like (CK5/6, P = 0.0005; CK14, P = 0.0001; EGFR, P = 0.003) cancers, showing increased proliferation (Mib1, P = 0.002), decreased apoptosis (Bcl2, P < 0.0001) and poor NPI membership (P = 0.001). α1b expression correlated with poor cancer-specific survival (LR = 7.628, P = 0.022) and tumour recurrence (LR = 6.128, P = 0.047). Strong α2c was over-expressed in high grade (P = 0.007), HER3+ (P = 0.002) and HER4+ (P < 0.0001) cancers with borderline increase in EGFR, p53 and MIB1 proteins, and inverse association with hormonal (PgR, P = 0.002) phenotype. In contrast, strong β2 expression occurred in small-size, luminal-like (ER+, P < 0.001) tumours of low grade (P < 0.001) and lymph node stage (P = 0.027) that showed poor prognosis when hormonal treatment was withheld. Adrenoceptors were not found to be independent predictors of clinical outcome. Alpha1b and α2c AR is over-expressed in basal-like breast tumours of poor prognosis. Strong β2 adrenoceptor expression is seen in patients with a luminal (ER+) tumour phenotype and good prognosis, due to benefits derived from hormonal therapy. These findings suggest a possible role for targeted therapy using adrenoceptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor/adrenoceptor

BCSS:

Breast cancer-specific survival

CK:

Cytokeratin

DFI:

Disease-free interval

DM:

Distant metastasis

E:

Epinephrine

ER:

Oestrogen receptor

EGFR:

Epidermal growth factor receptor

NE:

Norepinephrine

PGR:

Progesterone receptor

References

  1. Surveillance Epidemiology and End Results. http://seer.cancer.gov/publications/

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Aksien LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  4. Johnston SRD (2009) Enhancing the efficacy of hormonal agents with selected targeted agents. Clin Breast Cancer 9:S28–S36

    Article  PubMed  CAS  Google Scholar 

  5. Engel J, Eckel R, Kerr J, Schmidt M, Furstenberger G, Richter R, Sauer H, Senn HJ, Holzel D (2003) The process of metastasisation for breast cancer. Eur J Cancer 39(12):1794–1806

    Article  PubMed  CAS  Google Scholar 

  6. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5(4):254–258

    Article  PubMed  CAS  Google Scholar 

  7. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2005) Neurotransmitters and chemokines regulate tumor cell migration: potential for a new pharmacological approach to inhibit invasion and metastasis development. Curr Pharm Des 11(3):403–411

    Article  PubMed  CAS  Google Scholar 

  8. Masur K, Niggemann B, Zaenker KS, Entschladen F (2001) Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res 61(7):2866–2869

    PubMed  CAS  Google Scholar 

  9. Lang K, Drell TL, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS, Entschladen F (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112(2):231–238

    Article  PubMed  CAS  Google Scholar 

  10. Drell TL, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F (2003) Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat 80(1):63–70

    Article  PubMed  CAS  Google Scholar 

  11. Palm D, Lang K, Niggemann B, Drell TL, Masur K, Zaenker KS, Entschladen F (2006) The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 118(11):2744–2749

    Article  PubMed  CAS  Google Scholar 

  12. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S, Cole SW (2006) Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 12(2):369–375

    Article  PubMed  CAS  Google Scholar 

  13. Dorn GW, Liggett SB (2008) Pharmacogenomics of beta-adrenergic receptors and their accessory signaling proteins in heart failure. CTS Clin Transl Sci 1(3):255–262

    Article  Google Scholar 

  14. Rosini M, Bolognesi ML, Giardina D, Minarini A, Tumiatti V, Melchiorre C (2007) Recent advances in alpha(1)-adrenoreceptor antagonists as pharmacological tools and therapeutic agents. Curr Top Med Chem 7(2):147–162

    Article  PubMed  CAS  Google Scholar 

  15. Harris AM, Warner BW, Wilson JM, Becker A, Rowland RG, Conner W, Lane M, Kimbler K, Durbin EB, Baron AT et al (2007) Effect of alpha 1-adrenoceptor antagonist exposure on prostate cancer incidence: an observational cohort study. J Urol 178(5):2176–2180

    Article  PubMed  CAS  Google Scholar 

  16. Algazi M, Plu-Bureau G, Flahault A, Dondon MG, Le MG (2006) Is beta-blocker treatment associated with a decrease in the risk of cancer. Lett Drug Des Discov 3(9):653–661

    Article  CAS  Google Scholar 

  17. Abdel-Fatah TMA, Powe DG, Ball G, Reis JS, Ellis IO (2009) The need for a biological grading system and its relationship to the current Nottingham histological grading system (NGS). EJC Suppl 7(2):264–265

    Google Scholar 

  18. El-Rehim D, Ball G, Pinder S, Rakha E, Paish C, Robertson J, Macmillan D, Blamey R, Ellis I (2005) High throughput protein expression analysis using tissue microarray technology of a large well -characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350

    Article  Google Scholar 

  19. El-Rehim DMA, Ball G, Pinder S, Ellis IO (2004) Molecular classification of breast carcinoma based on the protein expression immunoprofiles. J Pathol 204:3A–4A

    Google Scholar 

  20. Habashy HO, Powe DG, Rakha EA, Ball G, Paish C, Gee J, Nicholson RI, Ellis IO (2008) Forkhead-box A1 (FOXA1) expression in breast cancer and its prognostic significance. Eur J Cancer 44(11):1541–1551

    Article  PubMed  CAS  Google Scholar 

  21. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

  22. Luthy IA, Bruzzone A, Pinero CP, Castillo LF, Chiesa IJ, Vazquez SM, Sarappa MG (2009) Adrenoceptors: non-conventional target for breast cancer? Curr Med Chem 16(15):1850–1862

    Article  PubMed  CAS  Google Scholar 

  23. Badino G, Novelli A, Girardi C, Carlo FD (1996) Evidence for functional beta-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol Res 33(4–5):255–260

    PubMed  CAS  Google Scholar 

  24. Marchetti B, Fortier MA, Poyet P, Follea N, Pelletier G, Labrie F (1990) Beta-adrenergic receptors in the rat mammary gland during pregnancy and lactation—characterization, distribution, and coupling to adenylate cyclase. Endocrinology 126(1):565–574

    Article  PubMed  CAS  Google Scholar 

  25. Slotkin TA, Zhang JA, Dancel R, Garcia SJ, Willis C, Seidler FJ (2000) Beta-adrenoceptor signaling and its control of cell replication in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 60(2):153–166

    Article  PubMed  CAS  Google Scholar 

  26. Vandewalle B, Revillion F, Lefebvre J (1990) Functional adrenergic receptors in breast cancer cells. J Cancer Res Clin Oncol 116(3):303–306

    Article  PubMed  CAS  Google Scholar 

  27. Shang ZJ, Liu K, Liang DF (2009) Expression of beta(2)-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med 38(4):371–376

    Article  PubMed  CAS  Google Scholar 

  28. Draoui A, Vandewalle B, Hornez L, Revillion F, Lefebvre J (1991) Beta-adrenergic receptors in human breast cancer—characterization and correlation with progesterone and estradiol receptors. Anticancer Res 11(2):677–680

    PubMed  CAS  Google Scholar 

  29. Schuller HM (2007) Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Neuronal Act Tumor Tissue 39:45–63

    Article  CAS  Google Scholar 

  30. Lancashire L, Powe D, Reis-Filoh J, Rakha E, Lemetre C, Weigelt B, Abdel-Fatah T, Green A, Mukta R, Blamey R et al (2010) A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 120(1):83–93

    Article  PubMed  CAS  Google Scholar 

  31. Al-Wadei HA, Al-Wadei MH, Schuller HM (2009) Prevention of pancreatic cancer by the beta-blocker propranolol. Anti-Cancer Drugs 20(6):477–482

    Article  PubMed  CAS  Google Scholar 

  32. Powe DG, Habashy HO, Voss MH, Zaenker KS, Green AR, Ellis IO, Entschladen F (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1(7):628–638

    Google Scholar 

  33. Hui HX, Fernando MA, Heaney AP (2008) The alpha(1)-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappa B signalling to induce breast cancer cell apoptosis. Eur J Cancer 44(1):160–166

    Article  PubMed  CAS  Google Scholar 

  34. Lowe FC (2004) Role of the newer alpha(1)-adrenergic-receptor antagonists in the treatment of benign prostatic hyperplasia-related lower urinary tract symptoms. Clin Ther 26(11):1701–1713

    Article  PubMed  CAS  Google Scholar 

  35. Chiu G, Connolly PJ, Middleton SA, Li SJ, Pulito V, Liu JC, Baxter EW, Reitz AB (2008) Alpha(1a/1d)-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms. Expert Opin Therap Pat 18(12):1351–1360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Members of the Institute of Immunology, Witten/Herdecke University were supported by the Fritz Bender Foundation (Munich, Germany). In addition, the ministry of higher education (Egypt) is thanked for funding HOH.

Conflict interests

The authors have no conflict of interests to declare

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Powe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Supplementary material 1 (DOC 45 kb)

Table 2

Characteristics for patients investigated for α1b adrenoceptor protein expression (DOC 90 kb)

Table 3

Associations between α1b adrenoceptor protein expression and tumour relevant markers (DOC 122 kb)

Table 4

Characteristics for patients investigated for α2c adrenoceptor protein expression (DOC 90 kb)

Table 5

Associations between α2c adrenoceptor protein expression and tumour relevant markers (DOC 121 kb)

Table 6

Characteristics for patients investigated for β2 adrenoceptor protein expression (DOC 90 kb)

Table 7

Associations between β2 adrenoceptor protein expression and tumour relevant markers (DOC 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powe, D.G., Voss, M.J., Habashy, H.O. et al. Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Res Treat 130, 457–463 (2011). https://doi.org/10.1007/s10549-011-1371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1371-z

Keywords

Navigation