Skip to main content

Advertisement

Log in

A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Germline mutations in BRCA1 and BRCA2 explain approximately 25% of all familial breast cancers. Despite intense efforts to find additional high-risk breast cancer genes (BRCAx) using linkage analysis, none have been reported thus far. Here we explore the hypothesis that BRCAx breast tumors from genetically related patients share a somatic genetic etiology that might be revealed by array comparative genomic hybridization (aCGH) profiling. As BRCA1 and BRCA2 tumors can be identified on the basis of specific genomic profiles, the same may be true for a subset of BRCAx families. Analyses used aCGH to compare 58 non-BRCA1/2 familial breast tumors (designated BRCAx) to sporadic (non-familiar) controls, BRCA1 and BRCA2 tumors. The selection criteria for BRCAx families included at least three cases of breast cancer diagnosed before the age of 60 in the family, and the absence of ovarian or male breast cancer. Hierarchical cluster analysis was performed to determine sub-groups within the BRCAx tumor class and family heterogeneity. Analysis of aCGH profiles of BRCAx tumors indicated that they constitute a heterogeneous class, but are distinct from both sporadic and BRCA1/2 tumors. The BRCAx class could be divided into sub-groups. One subgroup was characterized by a gain of chromosome 22. Tumors from family members were classified within the same sub-group in agreement with the hypothesis that tumors from the same family would harbor a similar genetic background. This approach provides a method to target a sub-group of BRCAx families for further linkage analysis studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (2004) The global burden of disease: 2004 update

  2. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  3. Wooster R, Neuhausen SL, Mangion J et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265:2088–2090

    Article  PubMed  CAS  Google Scholar 

  4. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  PubMed  CAS  Google Scholar 

  5. Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59

    Article  PubMed  CAS  Google Scholar 

  6. Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822

    Article  PubMed  CAS  Google Scholar 

  7. Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  PubMed  CAS  Google Scholar 

  8. Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  PubMed  CAS  Google Scholar 

  9. Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  PubMed  CAS  Google Scholar 

  10. Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed  CAS  Google Scholar 

  11. Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40:703–706

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Lindblom P, Lindblom A (1998) A study of the PTEN/MMAC1 gene in 136 breast cancer families. Hum Genet 102:124–125

    PubMed  CAS  Google Scholar 

  13. Leggett BA, Young JP, Barker M (2003) Peutz-Jeghers syndrome: genetic screening. Expert Rev Anticancer Ther 3:518–524

    Article  PubMed  CAS  Google Scholar 

  14. Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121:1348–1353

    Article  PubMed  CAS  Google Scholar 

  15. Borresen AL, Andersen TI, Garber J et al (1992) Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 52:3234–3236

    PubMed  CAS  Google Scholar 

  16. Evans DG, Birch JM, Thorneycroft M, McGown G, Lalloo F, Varley JM (2002) Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet 39:941–944

    Article  PubMed  CAS  Google Scholar 

  17. Lalloo F, Varley J, Moran A et al (2006) BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 42:1143–1150

    Article  PubMed  CAS  Google Scholar 

  18. Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  PubMed  CAS  Google Scholar 

  19. Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345

    Article  PubMed  CAS  Google Scholar 

  20. Walsh T, King MC (2007) Ten genes for inherited breast cancer. Cancer Cell 11:103–105

    Article  PubMed  CAS  Google Scholar 

  21. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4:665–676

    Article  PubMed  CAS  Google Scholar 

  22. Kainu T, Juo SH, Desper R et al (2000) Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci USA 97:9603–9608

    Article  PubMed  CAS  Google Scholar 

  23. Huusko P, Juo SH, Gillanders E et al (2004) Genome-wide scanning for linkage in Finnish breast cancer families. Eur J Hum Genet 12:98–104

    Article  PubMed  CAS  Google Scholar 

  24. Thompson D, Szabo CI, Mangion J et al (2002) Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc Natl Acad Sci USA 99:827–831

    Article  PubMed  CAS  Google Scholar 

  25. Smith P, McGuffog L, Easton DF et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45:646–655

    Article  PubMed  CAS  Google Scholar 

  26. Burwinkel B, Shanmugam KS, Hemminki K et al (2006) Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study. BMC Cancer 6:268–272

    Article  PubMed  Google Scholar 

  27. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42–e47

    Article  PubMed  Google Scholar 

  28. Ponder BA, Antoniou A, Dunning A, Easton DF, Pharoah PD (2005) Polygenic inherited predisposition to breast cancer. Cold Spring Harb Symp Quant Biol 70:35–41

    Article  PubMed  CAS  Google Scholar 

  29. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  30. Oldenburg RA, Kroeze-Jansema KH, Houwing-Duistermaat JJ et al (2008) Genome-wide linkage scan in Dutch hereditary non-BRCA1/2 breast cancer families identifies 9q21–22 as a putative breast cancer susceptibility locus. Genes Chromosomes Cancer 47:947–956

    Article  PubMed  CAS  Google Scholar 

  31. Cui J, Antoniou AC, Dite GS et al (2001) After BRCA1 and BRCA2-what next? Multifactorial segregation analyses of three-generation, population-based Australian families affected by female breast cancer. Am J Hum Genet 68:420–431

    Article  PubMed  CAS  Google Scholar 

  32. Antoniou AC, Pharoah PD, McMullan G et al (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83

    Article  PubMed  CAS  Google Scholar 

  33. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  PubMed  CAS  Google Scholar 

  34. Curtis C, Lynch AG, Dunning MJ et al (2009) The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10:588–610

    Article  PubMed  Google Scholar 

  35. Wessels LF, van Welsem T, Hart AA, Van’t Veer LJ, Reinders MJ, Nederlof PM (2002) Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62:7110–7117

    PubMed  CAS  Google Scholar 

  36. van Beers EH, van Welsem T, Wessels LF et al (2005) Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res 65:822–827

    PubMed  Google Scholar 

  37. Jonsson G, Naylor TL, Vallon-Christersson J et al (2005) Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65:7612–7621

    PubMed  Google Scholar 

  38. Alvarez S, Diaz-Uriarte R, Osorio A et al (2005) A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–1153

    PubMed  CAS  Google Scholar 

  39. Gronwald J, Jauch A, Cybulski C et al (2005) Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization. Int J Cancer 114:230–236

    Article  PubMed  CAS  Google Scholar 

  40. Hu X, Stern HM, Ge L et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7:511–522

    Article  PubMed  CAS  Google Scholar 

  41. Joosse SA, van Beers EH, Tielen IH et al (2009) Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat 116:479–489

    Article  PubMed  CAS  Google Scholar 

  42. Joosse SA, Brandwijk KIM, Devilee P, Wesseling J, Hogervorst FB, Verhoef S, Nederlof PM (2010) Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat. PMID: 20614180

  43. van Beers EH, Joosse SA, Ligtenberg MJ et al (2006) A multiplex PCR predictor for aCGH success of FFPE samples. Br J Cancer 94:333–337

    Article  PubMed  Google Scholar 

  44. Oldenburg RA, Kroeze-Jansema K, Meijers-Heijboer H et al (2006) Characterization of familial non-BRCA1/2 breast tumors by loss of heterozygosity and immunophenotyping. Clin Cancer Res 12:1693–1700

    Article  PubMed  CAS  Google Scholar 

  45. Oldenburg RA, Kroeze-Jansema K, Kraan J et al (2003) The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res 63:8153–8157

    PubMed  CAS  Google Scholar 

  46. Joosse SA, van Beers EH, Nederlof PM (2007) Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material. BMC Cancer 7:43–53

    Article  PubMed  Google Scholar 

  47. Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics 6:27–40

    Article  PubMed  Google Scholar 

  48. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99:6567–6572

    Article  PubMed  CAS  Google Scholar 

  49. Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    Article  PubMed  CAS  Google Scholar 

  50. Stratton MR, Ford D, Neuhasen S et al (1994) Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nat Genet 7:103–107

    Article  PubMed  CAS  Google Scholar 

  51. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149

    Article  PubMed  CAS  Google Scholar 

  52. Rouleau E, Lefol C, Tozlu S et al (2007) High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin Genet 72:199–207

    Article  PubMed  CAS  Google Scholar 

  53. Tirkkonen M, Kainu T, Loman N et al (1999) Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosomes Cancer 24:56–61

    Article  PubMed  CAS  Google Scholar 

  54. Melchor L, Honrado E, Huang J et al (2007) Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13:7305–7313

    Article  PubMed  CAS  Google Scholar 

  55. Rosa-Rosa JM, Pita G, Gonzalez-Neira A et al (2009) A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer. Breast Cancer Res Treat 118:151–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Dutch Cancer Society/Koningin Wilhelmina Fonds, Grant NKB_NKI2007-3749.

Conflict of interest

The authors declare to have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Nederlof.

Additional information

MA Didraga and EH van Beers contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2011_1357_MOESM1_ESM.pdf

Supplementary Table 1 Chromosomal locations of significantly differential frequencies of gains and losses in pair wise comparisons between BRCAx and sporadic control, BRCA1- and BRCA2-mutated breast tumors, respectively (PDF 178 kb)

10549_2011_1357_MOESM2_ESM.pdf

Supplementary Table 2 Frequency of BAC clones per chromosome contributing to the 22 gain/22 loss classifier (PDF 129 kb)

10549_2011_1357_MOESM3_ESM.pdf

Supplementary Fig. 1 Heatmap diagrams (derived from log2 ratios) per chromosome comparing BRCAx tumors with BRCA1, BRCA2, and sporadic control tumors. Chromosomes 8, 17, 21, and 22 are presented in Fig. 2. Samples are sorted vertically. This vertical sorting is performed individually per panel (class), based on sample-to-sample complete Pearson correlation clustering of DNA copy number state (CGH level). Horizontal axes are not plotted to genomic scale but jump from BAC to BAC clone at the library density of approximately 1 MB resolution. Color scales were set to saturate at -1 and 1 for relative DNA copy numbers (red–black-green). Gains are represented in green and losses in red (PDF 621 kb)

10549_2011_1357_MOESM4_ESM.pdf

Supplementary Fig. 2 Test probability scores for the training sets of the ‘22 gain’ (blue) and ‘22 loss’ (pink) associated tumor samples (PDF 130 kb)

10549_2011_1357_MOESM5_ESM.pdf

Supplementary Fig. 3 Classification results for all 58 BRCAx tumors. Classification is made based on probability scores of the training sets from Supplementary Fig 2. Samples predicted as 22 gain-like are plotted in blue and the ones predicted as 22 loss-like are plotted in pink (PDF 122 kb)

10549_2011_1357_MOESM6_ESM.pdf

Supplementary Fig. 4 Classification results for all 49 sporadic control tumors. Classification is made based on probability scores of the training sets from Supplementary Fig. 2. Samples predicted as 22 gain-like are plotted in blue and the ones predicted as 22 loss-like are plotted in pink (PDF 121 kb)

10549_2011_1357_MOESM7_ESM.pdf

Supplementary Fig. 5 Heatmap diagram representation of hierarchical cluster analysis (complete Pearson correlation) for the BRCAx tumors from cluster 1, 2 and 5 as defined in Fig. 5. In total 207 BACs were included in the cluster analysis selected by PAM analysis of cluster 1 and 2 compared to cluster 5. Gains are represented in green and losses in red. The BAC names and chromosome numbers are indicated on the right, the sample number and cluster number above. (PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didraga, M.A., van Beers, E.H., Joosse, S.A. et al. A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients. Breast Cancer Res Treat 130, 425–436 (2011). https://doi.org/10.1007/s10549-011-1357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1357-x

Keywords

Navigation