Skip to main content

Advertisement

Log in

Expression of IGF1R in normal breast tissue and subsequent risk of breast cancer

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The growth hormone and insulin-like growth factor (IGF) axis plays an essential role in the growth and development of the mammary gland. IGF1 and IGF1 receptor (IGF1R) may also play a role in the early transformation of mammary cells. Using a nested case–control design, the association between IGF1R expression in normal breast tissue from benign biopsies and subsequent risk of breast cancer was examined in patients enrolled in the Nurses’ Health Study. The tissue microarrays (TMAs) containing normal terminal duct lobular units (TDLUs) from benign breast biopsies were constructed. Immunostains for IGF1R were performed on sections cut from the TMAs. A total of 312 women had evaluable IGF1R staining in normal TDLUs; 75 subsequently developed breast cancer (cases) and 237 did not (controls). The epithelial cells in the normal TDLUs were scored for both cytoplasmic and membrane staining for IGF1R. Cytoplasmic IGF1R expression was positively associated with subsequent risk of breast cancer (OR = 2.47, 95% CI 1.41–4.33). Women having TDLU epithelial cells showed little or no membrane expression of IGF1R, but those with high levels of cytoplasmic IGF1R were at the highest breast cancer risk and were 15 times more likely to develop subsequent breast cancer when compared with women who had little or no membrane or cytoplasmic IGF1R expression in their TDLU epithelial cells (OR = 15.9, 95% CI 3.6–69.8). In this study, it was demonstrated that IGF1R expression patterns in epithelial cells of normal TDLUs in benign breast biopsies were associated with an increased risk of subsequent breast cancer. Further studies to confirm these findings are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

Atypical ductal hyperplasia

ALH:

Atypical lobular hyperplasia

BBD:

Benign breast disease

BMI:

Body mass index

CI:

Confidence interval

ER:

Estrogen receptor

H&E:

Hematoxylin and eosin

IGF:

Insulin-like growth factor

IGF1R:

Insulin-like growth factor receptor

IRS1:

Insulin receptor substrate 1

NHS:

Nurses’ Health Study.

OR:

Odds Ratio

PI3K:

Phosphatidyl inositol-3 kinase

PR:

Progesterone receptor

TDLUs:

Normal terminal ductal lobular units

TMAs:

Tissue microarrays

References

  1. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518

    Article  PubMed  CAS  Google Scholar 

  2. Rubin R, Baserga R (1995) Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest 73(3):311–331

    PubMed  CAS  Google Scholar 

  3. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363(9418):1346–1353

    Article  PubMed  CAS  Google Scholar 

  4. Renehan AG, Harvie M, Howell A (2006) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and breast cancer risk: eight years on. Endocr Relat Cancer 13(2):273–278

    Article  PubMed  CAS  Google Scholar 

  5. Rinaldi S, Peeters PH, Berrino F, Dossus L, Biessy C, Olsen A, Tjonneland A, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Tehard B, Nagel G, Linseisen J, Boeing H, Lahmann PH, Trichopoulou A, Trichopoulos D, Koliva M, Palli D, Panico S, Tumino R, Sacerdote C, van Gils CH, van Noord P, Grobbee DE, Bueno-de-Mesquita HB, Gonzalez CA, Agudo A, Chirlaque MD, Barricarte A, Larranaga N, Quiros JR, Bingham S, Khaw KT, Key T, Allen NE, Lukanova A, Slimani N, Saracci R, Riboli E, Kaaks R (2006) IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 13(2):593–605

    Article  PubMed  CAS  Google Scholar 

  6. Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, Hankinson SE (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 13(2):583–592

    Article  PubMed  CAS  Google Scholar 

  7. Schernhammer ES, Holly JM, Pollak MN, Hankinson SE (2005) Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14(3):699–704

    Article  PubMed  CAS  Google Scholar 

  8. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V (1993) Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res 53(16):3736–3740

    PubMed  CAS  Google Scholar 

  9. Arteaga CL, Osborne CK (1989) Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 49(22):6237–6241

    PubMed  CAS  Google Scholar 

  10. Brunner N, Spang-Thomsen M, Cullen K (1996) The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer. Breast Cancer Res Treat 39(1):87–92

    Article  PubMed  CAS  Google Scholar 

  11. Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, Moorehead RA (2007) Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26(11):1636–1644

    Article  PubMed  CAS  Google Scholar 

  12. Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, Camuso AE, Gottardis M, Greer AF, Ho CP, Hurlburt W, Li A, Saulnier M, Velaparthi U, Wang C, Wen ML, Westhouse RA, Wittman M, Zimmermann K, Rupnow BA, Wong TW (2005) Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65(9):3781–3787

    Article  PubMed  CAS  Google Scholar 

  13. Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM (2000) Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene 19(7):889–898

    Article  PubMed  CAS  Google Scholar 

  14. Kleinberg DL, Wood TL, Furth PA, Lee AV (2009) Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 30(1):51–74

    Article  PubMed  CAS  Google Scholar 

  15. Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL (2007) IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13(18 Pt 2):5549s–5555s

    Article  PubMed  CAS  Google Scholar 

  16. Feng Y, Zhu Z, Xiao X, Choudhry V, Barrett JC, Dimitrov DS (2006) Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther 5(1):114–120

    Article  PubMed  CAS  Google Scholar 

  17. Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, Bassi R, Abdullah R, Hooper AT, Koo H, Jimenez X, Johnson D, Apblett R, Kussie P, Bohlen P, Witte L, Hicklin DJ, Ludwig DL (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63(24):8912–8921

    PubMed  CAS  Google Scholar 

  18. Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5(5):388–396

    Article  PubMed  CAS  Google Scholar 

  19. Collins LC, Baer HJ, Tamimi RM, Connolly JL, Colditz GA, Schnitt SJ (2006) The influence of family history on breast cancer risk in women with biopsy-confirmed benign breast disease: results from the Nurses’ Health Study. Cancer 107(6):1240–1247

    Article  PubMed  Google Scholar 

  20. Page DL, Dupont WD, Rogers LW, Rados MS (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55(11):2698–2708

    Article  PubMed  CAS  Google Scholar 

  21. Collins LC, Wang Y, Connolly JL, Baer HJ, Hu R, Schnitt SJ, Colditz GA, Tamimi RM (2009) Potential role of tissue microarrays for the study of biomarker expression in benign breast disease and normal breast tissue. Appl Immunohistochem Mol Morphol. 17(5):438–441 PMCID: PMC2783452

    Article  PubMed  CAS  Google Scholar 

  22. Schumacher R, Soos MA, Schlessinger J, Brandenburg D, Siddle K, Ullrich A (1993) Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem 268(2):1087–1094

    PubMed  CAS  Google Scholar 

  23. Soos MA, Nave BT, Siddle K (1993) Immunological studies of type I IGF receptors and insulin receptors: characterisation of hybrid and atypical receptor subtypes. Adv Exp Med Biol 343:145–157

    PubMed  CAS  Google Scholar 

  24. Takahashi MH, Thomas GA, Williams ED (1995) Evidence for mutual interdependence of epithelium and stromal lymphoid cells in a subset of papillary carcinomas. Br J Cancer 72(4):813–817

    Article  PubMed  CAS  Google Scholar 

  25. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    PubMed  CAS  Google Scholar 

  26. Happerfield LC, Miles DW, Barnes DM, Thomsen LL, Smith P, Hanby A (1997) The localization of the insulin-like growth factor receptor 1 (IGFR-1) in benign and malignant breast tissue. J Pathol 183(4):412–417

    Article  PubMed  CAS  Google Scholar 

  27. Atkins D, Reiffen KA, Tegtmeier CL, Winther H, Bonato MS, Storkel S (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52(7):893–901

    Article  PubMed  CAS  Google Scholar 

  28. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J, Larsson O (2010) SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 3 (108):ra10. doi:3/108/ra10 [pii]10.1126/scisignal.2000628

  29. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, Protheroe AS, Howarth M, Macaulay VM (2010) Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 70(16):6412–6419 PMCID: PMC2981028

    Article  PubMed  CAS  Google Scholar 

  30. Tushir JS, Clancy J, Warren A, Wrobel C, Brugge JS, D’Souza-Schorey C (2010) Unregulated ARF6 activation in epithelial cysts generates hyperactive signaling endosomes and disrupts morphogenesis. Mol Biol Cell 21(13):2355–2366 PMCID: PMC2893997

    Article  PubMed  CAS  Google Scholar 

  31. Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315(4):683–696

    Article  PubMed  CAS  Google Scholar 

  32. Romanelli RJ, LeBeau AP, Fulmer CG, Lazzarino DA, Hochberg A, Wood TL (2007) Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt. J Biol Chem 282(31):22513–22524

    Article  PubMed  CAS  Google Scholar 

  33. Sehat B, Andersson S, Girnita L, Larsson O (2008) Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 68(14):5669–5677

    Article  PubMed  CAS  Google Scholar 

  34. Kermorgant S, Zicha D, Parker PJ (2004) PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J 23(19):3721–3734

    Article  PubMed  CAS  Google Scholar 

  35. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219

    Article  PubMed  CAS  Google Scholar 

  36. Ginty F, Adak S, Can A, Gerdes M, Larsen M, Cline H, Filkins R, Pang Z, Li Q, Montalto MC (2008) The relative distribution of membranous and cytoplasmic met is a prognostic indicator in stage I and II colon cancer. Clin Cancer Res 14(12):3814–3822

    Article  PubMed  CAS  Google Scholar 

  37. Weroha SJ, Haluska P (2008) IGF-1 receptor inhibitors in clinical trials–early lessons. J Mammary Gland Biol Neoplasia 13(4):471–483 PMCID: PMC2728362

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the participants in the NHS for their outstanding dedication and commitment to this study. This study was supported by the Public Health Service Grants Nos. CA087969, CA046475, and SPORE in Breast Cancer CA089393, from the National Cancer Institute, the National Institutes of Health, Department of Health and Human Services and the Breast Cancer Research Foundation, and the American Cancer Society (to G. A. Colditz).

Competing Interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rulla M. Tamimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamimi, R.M., Colditz, G.A., Wang, Y. et al. Expression of IGF1R in normal breast tissue and subsequent risk of breast cancer. Breast Cancer Res Treat 128, 243–250 (2011). https://doi.org/10.1007/s10549-010-1313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1313-1

Keywords

Navigation