Skip to main content

Advertisement

Log in

Joint effect of peroxisome proliferator-activated receptor γ genetic polymorphisms and estrogen-related risk factors on breast cancer risk: results from a case–control study in Taiwan

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) has been linked with possible antineoplastic effects in colorectal carcinogenesis. However, data for the possible link between PPARγ and breast cancer risk are sparse. We assessed the association of three polymorphisms in PPARγ (rs10865710 [C-681T], rs1805192 [Pro12Ala], and rs3856806 [C1431T]) with the risk of breast cancer in an ethnic Chinese female population in Taiwan. In addition, interactions with estrogen exposures were also explored. Genotypes for the PPARγ polymorphisms were determined on 291 incident breast cancer cases and 589 matched controls by fluorogenic 5′-nuclease assay. The at-risk haplotypes were defined according to the three polymorphisms in the following order: C-681T, Pro12Ala, and C1431T, which include CCT, GGT, and GGC. In addition, a critical period of estrogen exposure was estimated by the interval between age at menarche and age at first full-term pregnancy. Overall, there was no evidence of a significant impact of individual polymorphisms of PPARγ on breast cancer risk. However, the haplotype analysis revealed that women harboring at-risk haplotypes showed a significant 67% increase in breast cancer risk [adjusted odds ratio (OR) 1.67; 95% confidence interval (CI) 1.11–2.52]. Furthermore, there was a significant joint effect of estrogen exposure-related factors and at-risk haplotypes of PPARγ on breast cancer risk (adjusted OR 4.04; 95% CI 1.89–8.65), particularly in premenopausal women. The present study implicates a role for PPARγ in breast cancer risk. Mechanistic studies to fully elucidate the mechanisms underlying PPARγ’s effects should be pursued in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

ERE:

Estrogen response element

HWE:

Hardy–Weinberg equilibrium

FFTP:

First full-term pregnancy

OR:

Odds ratio

PPARγ:

Peroxisome proliferator-activated receptor γ

STAT5:

Signal transducer and activator of transcription 5

WC:

Waist circumference

WHR:

Waist-to-hip ratio

References

  1. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  PubMed  CAS  Google Scholar 

  2. Rose DP, Komninou D, Stephenson GD (2004) Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5:153–165

    Article  PubMed  CAS  Google Scholar 

  3. Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049

    Article  PubMed  CAS  Google Scholar 

  4. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    Article  PubMed  CAS  Google Scholar 

  5. Berger J, Moller D (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  PubMed  CAS  Google Scholar 

  6. DuBois RN, Gupta R, Brockman J, Reddy BS, Krakow SL, Lazar MA (1998) The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 19:49–53

    Article  PubMed  CAS  Google Scholar 

  7. Yee LD, Sabourin CL, Liu L, Li HM, Smith PJ, Seewaldt V, Kniss DA (1999) Peroxisome proliferator-activated receptor gamma activation in human breast cancer. Int J Oncol 15:967–973

    PubMed  CAS  Google Scholar 

  8. Smith MR, Kantoff PW (2002) Peroxisome proliferator-activated receptor gamma (PPARgamma) as a novel target for prostate cancer. Invest New Drugs 20:195–200

    Article  PubMed  CAS  Google Scholar 

  9. Suh N, Wang Y, Williams CR, Risingsong R, Gihmer T, Willson TM, Sporn MB (1999) A new ligand for the peroxisome proliferator-activated receptor-γ (PPAR-γ), GW7845, inhibits rat mammary carcinogenesis. Cancer Res 59:5671–5673

    PubMed  CAS  Google Scholar 

  10. Mehta RG, Williamson E, Patel MK, Koeffler HP (2000) A ligand of peroxisome proliferator-activated receptor-γ (PPARγ), retinoids and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92:418–423

    Article  PubMed  CAS  Google Scholar 

  11. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470

    Article  PubMed  CAS  Google Scholar 

  12. Rubin GL, Zhao Y, Kalus AM, Simpson ER (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 60:1604–1608

    PubMed  CAS  Google Scholar 

  13. Suzuki T, Hayashi S, Miki Y, Nakamura Y, Moriya T, Sugawara A, Ishida T, Ohuchi N, Sasano H (2006) Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions. Endocr Relat Cancer 13:233–250

    Article  PubMed  CAS  Google Scholar 

  14. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR (1997) Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 241:270–274

    Article  PubMed  CAS  Google Scholar 

  15. Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20:284–287

    Article  PubMed  CAS  Google Scholar 

  16. Meirhaeghe A, Fajas L, Helbecque N, Cottel D, Lebel P, Dallongville J, Deeb S, Auwerx J, Amouyel P (1998) A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese humans. Hum Mol Genet 7:435–440

    Article  PubMed  CAS  Google Scholar 

  17. Valve R, Sivenius K, Miettinen R, Pihlajamaki J, Rissanen A, Deeb SS, Auwerx J, Uusitupa M, Laakso M (1999) Two polymorphisms in the peroxisome proliferator-activated receptor gamma gene are associated with severe overweight among obese women. J Clin Endocrinol Metab 84:3708–3712

    Article  PubMed  CAS  Google Scholar 

  18. Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, Amouyel P (2003) A functional polymorphism in a STAT5b site of the human PPAR 3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol 23:289–294

    Article  PubMed  CAS  Google Scholar 

  19. Wu MH, Chou YC, Chou WY, Hsu GC, Yu CP, Yu JC, Chu CM, Sun CA (2009) Circulating levels of leptin, adiposity and breast cancer. Br J Cancer 100:578–582

    Article  PubMed  CAS  Google Scholar 

  20. Wu MH, Chou YC, Chou WY, Hsu GC, Chu CH, Yu CP, Yu JC, Sun CA (2010) Relationships between critical period of estrogen exposure and circulating levels of insulin-like growth factor-I (IGF-I) in breast cancer: evidence from a case-control study. Int J Cancer 126:508–514

    Article  PubMed  CAS  Google Scholar 

  21. Colditz GA, Frazier AL (1995) Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev 4:567–571

    PubMed  CAS  Google Scholar 

  22. Wu MH, Chou YC, Yu JC, Yu CP, Wu CC, Chu CM, Yang T, Lai CH, Hsieh CY, You SL, Chen CJ, Sun CA (2006) Hormonal and body-size factors in relation to breast cancer risk: a prospective study of 11,889 women in a low-incidence area. Ann Epidemiol 16:223–229

    Article  PubMed  Google Scholar 

  23. Barrett J, Fry B, Maller J, Daly M (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  24. Long J, Williams R, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 56:799–810

    PubMed  CAS  Google Scholar 

  25. Kleinbaum D, Kupper L, Muller K (1998) Applied regression analysis and other multivariate methods. PWS-KENT, Boston

    Google Scholar 

  26. Memisoglu A, Hankinson S, Manson J, Colditz G, Hunter D (2002) Lack of association of the codon 12 polymorphism of the peroxisome proliferator-activated receptor gamma gene with breast cancer and body mass. Pharmacogenetics 12:597–603

    Article  PubMed  CAS  Google Scholar 

  27. Vogel U, Christensen J, Nexø B, Wallin H, Friis S, Tjønneland A (2007) Peroxisome proliferator-activated receptor γ2 Pro12Ala, interaction with alcohol intake and NSAID use, in relation to risk of breast cancer in a prospective study of Danes. Carcinogenesis 28:427–434

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, McCullough M, Stevens V, Rodriguez C, Jacobs E, Teras L, Pavluck A, Thun M, Calle E (2007) Nested case-control study of energy regulation candidate gene single nucleotide polymorphisms and breast cancer. Anticancer Res 27:589–593

    PubMed  CAS  Google Scholar 

  29. Doney A, Fischer B, Frew D, Cumming A, Flavell DM, World M, Montgomery HE, Boyle D, Morris A, Palmer CN (2002) Haplotype analysis of the PPARGgamma Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet 3:21–29

    Article  PubMed  Google Scholar 

  30. Tai ES, Corella D, Deurenberg-Yap M, Adiconis X, Chew SK, Tan CE, Ordovas JM (2004) Differential effects of the C1431T and Pro12Ala PPARγ gene variants on plasma lipids and diabetes risk in an Asian population. J Lipid Res 45:674–685

    Article  PubMed  CAS  Google Scholar 

  31. Smith WM, Zhou XP, Kurose K, Gao X, Latif F, Kroll T, Sugano K, Cannistra SA, Clinton SK, Maher ER, Prior TW, Eng C (2001) Opposite association of two PPARG variants with cancer: overrepresentation of H449H in endometrial carcinoma cases and underrepresentation of P12A in renal cell carcinoma cases. Hum Genet 109:146–151

    Article  PubMed  CAS  Google Scholar 

  32. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    Article  PubMed  CAS  Google Scholar 

  33. Huang CS, Lin CH, Lu YS, Shen CY (2010) Unique features of breast cancer in Asian women: breast cancer in Taiwan as an example. J Steroid Biochem Mol Biol 118:300–303

    Article  PubMed  CAS  Google Scholar 

  34. Wacholder S, Silverman DT, McLaughlin JK, Silverman DT, Mandel JS (1992) Selection of controls in case–control studies. I. Principles. Am J Epidemiol 135:1019–1028

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the grants from National Science Council, Taiwan, Republic of China (NSC 97-2314-B-030-006-MY3). The authors are indebted to all participated women of this study, in particular those who took the effort to supply this study with a blood sample.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-An Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, MH., Chu, CH., Chou, YC. et al. Joint effect of peroxisome proliferator-activated receptor γ genetic polymorphisms and estrogen-related risk factors on breast cancer risk: results from a case–control study in Taiwan. Breast Cancer Res Treat 127, 777–784 (2011). https://doi.org/10.1007/s10549-010-1282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1282-4

Keywords

Navigation