Skip to main content

Advertisement

Log in

The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The breast cancer susceptibility protein 1 (BRCA1) participates in the maintenance of cells genomic integrity through DNA repair, cell cycle checkpoint, protein ubiquitination, and transcriptional regulation. The N-terminus of BRCA1 contains a RING domain that preferentially forms a heterodimeric complex with BARD1. The BRCA1–BARD1 RING complex has an E3 ubiquitin ligase activity that plays an essential role in response to DNA damage. Preclinical and clinical studies have recently revealed that structural changes to the heterodimer result in alterations to the BRCA1-mediated DNA repair pathways in cancer cells, and lead to hypersensitivity to several chemotherapeutic agents. It is of interest to approach the BRCA1 RING domain as a potentially molecular target for platinum-based drugs for cancer therapy. A previous study has shown that the anticancer drug cisplatin formed intramolecular and intermolecular BRCA1 adducts in which His117 was the primary platinum-binding site, and conferred conformational changes and induced thermostability. Here, we have studied the functional consequence of the in vitro platination of the BRCA1 RING domain by a number of platinum complexes. The BRCA1 ubiquitin ligase activity was inhibited by transplatin > cisplatin > oxaliplatin > carboplatin in that order. The consequences of the binding of the platinum complexes on the reactivity of the BRCA1 were also discussed. The data raised the possibility of selectively targeting the BRCA1 DNA repair for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Huen MSY, Shirley MH, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11:138–148. doi:10.1038/nrm2831

    Article  CAS  PubMed  Google Scholar 

  2. O’Donovan PJ, Livingston DM (2010) BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31:961–967. doi:10.1093/carcin/bgq069

    Article  PubMed  Google Scholar 

  3. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 8:833–837. doi:10.1038/nsb1001-833

    Article  CAS  PubMed  Google Scholar 

  4. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MCW, Hwang LY, Bowcock AM, Baer R (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14:430–440. doi:10.1038/ng1296-430

    Article  CAS  PubMed  Google Scholar 

  5. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540. doi:10.1074/jbc.C000881200

    Article  CAS  PubMed  Google Scholar 

  6. Xia Y, Pao GM, Chen H-W, Verma IM, Hunter T (2003) Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 278:5255–5263. doi:10.1074/jbc.M204591200

    Article  CAS  PubMed  Google Scholar 

  7. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467. doi:10.1038/nature07963

    Article  CAS  PubMed  Google Scholar 

  8. Wu-Baer F, Ludwig T, Baer R (2010) The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function. Mol Cell Biol 30:2787–2798. doi:10.1128/MCB.01056-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mallery DL, Vandenberg CJ, Hiom K (2002) Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 21:6755–6762. doi:10.1093/emboj/cdf691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starita LM, Horwitz AA, Keogh MC, Ishioka C, Parvin JD, Chiba N (2005) BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 280:24498–24505. doi:10.1074/jbc.M414020200

    Article  CAS  PubMed  Google Scholar 

  11. Eakin CM, MacCoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor α is a putative substrate of the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799. doi:10.1073/pnas.0610887104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris JR (2010) More modifiers move on DNA damage. Cancer Res 70:3861–3862. doi:10.1158/0008-5472.CAN-10-0468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462:886–890. doi:10.1038/nature08593

    Article  CAS  PubMed  Google Scholar 

  14. Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD (2010) Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res 70:988–995. doi:10.1158/0008-5472.CAN-09-2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei L, Lan L, Hong Z, Yasui A, Ishioka C, Chiba N (2008) Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol Cell Biol 28:7380–7393. doi:10.1128/MCB.01075-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruffner H, Joazeiro CAP, Hemmati D, Hunter T, Verma IM (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA 98:5134–5139. doi:10.1073/pnas.081068398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amir E, Seruga B, Serrano R, Ocana A (2010) Targeting DNA repair in breast cancer: a clinical and translational update. Cancer Treat Rev. doi:10.1016/j.ctrv.2010.03.006

  18. Tassone P, Martino MTD, Ventura M, Pietragalla A, Cucinotto I, Calimeri T, Bulotta A, Neri P, Caraglia M, Tagliaferri P (2009) Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther 8:648–653. doi:10.4161/cbt.8.7.7968

    Article  CAS  PubMed  Google Scholar 

  19. Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, Cybulski C, Kladny J, Gorski B, Lubinski J, Narod SA (2009) Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 115:359–363. doi:10.1007/s10549-008-0128-9

    Article  CAS  PubMed  Google Scholar 

  20. Price M, Monteiro ANA (2010) Fine tuning chemotherapy to match BRCA1 status. Biochem Pharmacol 80:647–653. doi:10.1016/j.bcp.2010.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun Y (2006) E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 8:645–654. doi:10.1593/neo.06376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438–444. doi:10.1038/nature07960

    Article  CAS  PubMed  Google Scholar 

  23. Atipairin A, Canyuk C, Ratanaphan A (2010) Cisplatin affects the conformation of apo-form, not holo-form, of BRCA1 RING finger domain and confers thermal stability. Chem Biodivers 7:1949–1967. doi:10.1002/cbdv.200900308

    Article  CAS  PubMed  Google Scholar 

  24. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D III, Fukuda M, Ohta T, Klevit R (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci USA 100:5646–5651. doi:10.1073/pnas.0836054100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu Z, Liu Q, Liang X, Yang X, Wang N, Wang X, Sun H, Lu Y, Guo Z (2009) Reactivity of platinum-based antitumor drugs towards a Met- and His-rich 20 mer peptide corresponding to the N-terminal domain of human copper transporter 1. J Biol Inorg Chem 14:1313–1323. doi:10.1007/s00775-009-0576-7

    Article  CAS  PubMed  Google Scholar 

  26. Frey U, Ranford JD, Sadler PJ (1993) Ring-opening reactions of the anticancer drug carboplatin: NMR characterization of cis-[Pt(NH3)2(CBDCA-O)(5′-GMP-N7)] in solution. Inorg Chem 32:1333–1340. doi:10.1021/ic00060a005

    Article  CAS  Google Scholar 

  27. Davies MS, Berners-Price SJ, Hambley TW (2000) Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA. Inorg Chem 39:5603–5613. doi:10.1021/ic000847w

    Article  CAS  PubMed  Google Scholar 

  28. Trynda-Lemiesz L, Kozøowski H, Keppler BK (1999) Effect of cis-, trans diamminedichloroplatinum(II) and DBP on human serum albumin. J Inorg Biochem 77:141–146. doi:10.1016/S0162-0134(99)00183-X

    Article  CAS  PubMed  Google Scholar 

  29. Jerremalm E, Videhult P, Alvelius G, Griffiths WJ, Bergman T, Eksborg S, Ehrsson H (2002) Alkaline hydrolysis of oxaliplatin-isolation and identification of the oxalato monodentate intermediate. J Pharm Sci 91:2116–2121. doi:10.1002/jps.10201

    Article  CAS  PubMed  Google Scholar 

  30. Casini A, Gabbiani C, Michelucci E, Pieraccini G, Moneti G, Dyson PJ, Messori L (2009) Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J Biol Inorg Chem 14:761–770. doi:10.1007/s00775-009-0489-5

    Article  CAS  PubMed  Google Scholar 

  31. Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterized by electrospray ionisation mass spectrometry. J Biol Inorg Chem 15:677–688. doi:10.1007/s00775-010-0635-0

    Article  CAS  PubMed  Google Scholar 

  32. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li O, Juul N, Leong C-O, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, Nicolo AD, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28:1145–1153. doi:10.1200/JCO.2009.22.4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Font A, Taron M, Gago JL, Costa C, Sánchez JJ, Carrato C, Mora M, Celiz P, Perez L, Rodrίguez D, Gimenez-Capitan A, Quiroga V, Benlloch S, Ibarz L, Rosell R (2010) BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol. doi:10.1093/annonc/mdq333

  34. Quinn JE, James CR, Stewart GE, Mulligan JM, White P, Chang GK, Mullan PB, Johnston PG, Wilson RH, Harkin DP (2007) BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res 13:7413–7420. doi:10.1158/1078-0432.CCR-07-1083

    Article  CAS  PubMed  Google Scholar 

  35. Taron M, Rosell R, Felip E, Mendez P, Souglakos J, Ronco MS, Queralt C, Majo J, Sanchez JM, Sanchez JJ, Maestre J (2004) BRCA1 mRNA expression as an indicator of chemoresistance in lung cancer. Hum Mol Genet 13:2443–2449. doi:10.1093/hmg/ddh260

    Article  CAS  PubMed  Google Scholar 

  36. Aris SM, Farrell NP (2009) Towards antitumor active trans-platinum compounds. Eur J Inorg Chem 2009:1293–1302. doi:10.1002/ejic.200801118

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financial supported by grants of the Synchrotron Light Research Institute (Public organization) (1-2548/LS01), the National Research Council of Thailand (PHA530097S), and Prince of Songkla University (PHA530188S) We would like to thank Dr. Brian Hodgson for assistance with the English, and the Pharmaceutical Laboratory Service Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adisorn Ratanaphan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atipairin, A., Canyuk, B. & Ratanaphan, A. The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs. Breast Cancer Res Treat 126, 203–209 (2011). https://doi.org/10.1007/s10549-010-1182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1182-7

Keywords

Navigation