Skip to main content

Advertisement

Log in

Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We previously isolated cacalol as a free radical-scavenging compound from Cacalia delphiniifolia which is a traditional Asian herbal plant and is believed to have medicinal effects on cancer. In this report, we demonstrated that cacalol has strong anti-proliferation effect on breast cancer cells and induces apoptosis by activating a pro-apoptotic pathway. We also found that a combination of cacalol and other chemotherapeutic drugs (Taxol and cyclophosphamide) synergistically induced apoptosis and partially overcame chemo-resistance. To further gain a mechanistic insight, we tested a potential inhibitory effect of cacalol on fatty acid synthase gene (FAS) in breast cancer cells, and found that cacalol significantly modulated the expression of the FAS gene, which resulted in apoptosis through activation of DAPK2 and caspase 3. We have also shown that cacalol significantly suppressed the Akt-sterol regulatory element-binding proteins (SREBP) signaling pathway and concomitant transcriptional activation of FAS. In a xenograft model of nude mouse, when cacalol was administered intraperitoneally, tumor growth was significantly suppressed. Importantly, oral administration of cacalol before implanting tumors showed significant preventive effect on tumor growth in the same animal model. Furthermore, the treatment of mice with a combination of low dose of Taxol and cacalol significantly suppressed the tumor growth. Taken together, our results indicate that cacalol induces apoptosis in breast cancer cells and impairs mammary tumor growth in vivo by blocking the expression of the FAS gene through modulation of Akt-SREBP pathway, suggesting that cacalol has potential utility as a chemopreventive and chemotherapeutic agent for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FAS:

Fatty acid synthase.

ROS:

Reactive oxygen species.

SREBP:

Sterol regulatory element-binding protein

CPA:

Cyclophosphamide

HIF1:

Hypoxia-inducible factor-1

References

  1. Kuhajda FP, Jenner K, Wood FD et al (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91:6379–6383

    Article  PubMed  CAS  Google Scholar 

  2. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208

    Article  PubMed  CAS  Google Scholar 

  3. Menendez JA, Lupu R (2004) Fatty acid synthase-catalyzed de novo fatty acid biosynthesis: from anabolic-energy-storage pathway in normal tissues to jack-of-all-trades in cancer cells. Arch Immunol Ther Exp (Warsz) 52:414–426

    CAS  Google Scholar 

  4. Kuhajda FP, Katumuluwa AI, Pasternack GR (1989) Expression of haptoglobin related protein and its potential as a tumor antigen. Proc Natl Acad Sci USA 86:1188–1192

    Article  PubMed  CAS  Google Scholar 

  5. Kuhajda FP, Piantadosi S, Pasternack GP (1989) Haptoglobin-related protein (Hpr) epitopes in breast cancer as a predictor of recurrence of the disease. N Engl J Med 321:636–641

    Article  PubMed  CAS  Google Scholar 

  6. Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62:642–646

    PubMed  Google Scholar 

  7. Yang YA, Han WF, Morin PJ, Chrest FJ, Pizer ES (2002) Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp Cell Res 279:80–90

    Article  PubMed  CAS  Google Scholar 

  8. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R (2004) Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: role of exogenous dietary fatty acid, p53–21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Int J Oncol 24:591–608

    PubMed  CAS  Google Scholar 

  9. Porstmann T, Griffiths B, Chung YL et al (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24:6465–6481

    PubMed  CAS  Google Scholar 

  10. Shimano H, Yahagi N, Amemiya-Kudo M et al (1999) Sterol regulatory element binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274:35829–35832

    Article  Google Scholar 

  11. Wang D, Sul HS (1998) Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway: involvement of protein kinase B/Akt. J Biol Chem 273:25420–25426

    Article  PubMed  CAS  Google Scholar 

  12. Fleischmann M, Iynedjian PB (2000) Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 349:13–17

    Article  PubMed  CAS  Google Scholar 

  13. Kotzka J, Muller-Wieland D, Roth G et al (2000) Sterol regulatory element binding proteins (SREBP)-1a and SREBP-2 are linked to the MAP-kinase cascade. J Lipid Res 41:99–108

    PubMed  CAS  Google Scholar 

  14. Baron A, Migita T, Tang D, Loda M (2004) Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 91:47–53

    Article  PubMed  CAS  Google Scholar 

  15. Furuta E, Pai S, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68:1003–1011

    Article  PubMed  CAS  Google Scholar 

  16. Bandyopadhyay S, Zhan R, Wang Y et al (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66:5934–5940

    Article  PubMed  CAS  Google Scholar 

  17. Shindo K, Kimura M, Iga M (2004) Potent antioxidative activity of Cacalol, a sesquiterpene contained in Cacalia delphiniifolia Sleb et Zucc. Biosci Biotechnol Biochem 68:1393–1394

    Article  PubMed  CAS  Google Scholar 

  18. Kedrowski B, Hoppe R (2008) A concise synthesis of (±)-cacalol. J Org Chem 73:5177–5179

    Article  PubMed  CAS  Google Scholar 

  19. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764

    PubMed  CAS  Google Scholar 

  20. Naya K, Miyoshi Y, Mori H (1976) The sesquiterpenes of Cacalia species. Chem Lett 73–76

  21. Torihata A, Hanai R, Gong X (2007) Chemical and genetic differentiation of Ligularia tsang-chanensis in Yunnan and Sichuan provinces of China. Chem Biodivers 4:500–507

    Article  PubMed  CAS  Google Scholar 

  22. Inman W, Luo J, Jolad DS, King SR, Cooper R (1999) Antihyperglycemic sesquiterpenes from Psacalium decompositum. J Nat Prod 62:1088–1092

    Article  PubMed  CAS  Google Scholar 

  23. Jimenez-Estrada M, Chilpa RR, Apan TR (2006) Anti-inflammatory activity of cacalol and cacalone sesquiterpenes isolated from Psacalium decompositum. J Ethnopharmacol 105:34–38

    Article  PubMed  CAS  Google Scholar 

  24. Medes G, Thomas A, Weinhouse S (1953) Metabolism of neoplastic tissue IV: a study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 13:27–29

    PubMed  CAS  Google Scholar 

  25. Swinnen J, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9:358–365

    Article  PubMed  CAS  Google Scholar 

  26. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  27. Knowles LM, Axelrod F, Browne CD, Smith JW (2004) A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J Biol Chem 279:30540–30545

    Article  PubMed  CAS  Google Scholar 

  28. Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56:2745–2747

    PubMed  CAS  Google Scholar 

  29. Thupari JN, Pinn ML, Kuhajda FP (2001) Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun 285:217–223

    Article  PubMed  CAS  Google Scholar 

  30. Unruh A, Ressel A, Mohamed HG et al (2003) The hypoxia-inducible factor-1a is a negative factor for tumor therapy. Oncogene 22:3213–3220

    Article  PubMed  CAS  Google Scholar 

  31. Erler JT, Cawthorne CJ, Williams KJ et al (2004) Hypoxia-mediated downregulation of bid and bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24:2875–2889

    Article  PubMed  CAS  Google Scholar 

  32. Brown LM, Cowen RL, Debray C et al (2006) Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1. Mol Pharmacol 69:411–418

    Article  PubMed  CAS  Google Scholar 

  33. Hussein D, Estlin EJ, Dive C, Makin GWJ (2006) Chronic hypoxia promotes hypoxia-inducible factor-1a-dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther 5:2241–2250

    Article  PubMed  CAS  Google Scholar 

  34. Kim HS, Oh JM, Jin DH, Yang KH, Moon EY (2008) Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production. Pharmacology 81:317–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kounosuke Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Furuta, E., Shindo, K. et al. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Res Treat 128, 57–68 (2011). https://doi.org/10.1007/s10549-010-1076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1076-8

Keywords

Navigation