Skip to main content

Advertisement

Log in

Glycodelin expression associates with differential tumour phenotype and outcome in sporadic and familial non-BRCA1/2 breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Glycodelin (encoded by PAEP gene) is a secreted lipocalin protein mainly expressed in reproductive tissues, but also in several tumour types. In the breast, glycodelin is expressed both in normal epithelial and cancerous tissue. To investigate the association of glycodelin with clinicopathological features of breast cancer and outcome of patients we evaluated the protein expression of glycodelin in a large series of breast tumours. Immunohistochemical analysis of tissue microarrays was used to study glycodelin expression on 399 sporadic and 436 familial non-BRCA1/2 tumours with strong family history. Gene expression analysis was used to define genes co-expressed with PAEP in sporadic and familial non-BRCA1/2 breast tumours. In the sporadic series, the glycodelin expression associated with low proliferation rate (P < 0.001), with a tendency towards well-differentiated tumours (grades 1 and 2, P = 0.012) and high cyclin D1 (P = 0.034) expression. However, in familial non-BRCA1/2 cases with strong family history glycodelin expression associated with a less favourable phenotype, i.e. positive lymph node status (P = 0.003) and HER2-positive tumours (P = 0.009). Moreover, the patients with glycodelin-positive tumours had an increased risk for distant metastases (P = 0.001) and in multivariate analysis glycodelin expression was an independent predictor of metastasis (hazard ratio (HR) = 2.22, 95% confidence interval (95% CI) = 1.22–4.03, P = 0.009) in familial non-BRCA1/2 breast cancer. Gene expression analysis further revealed different gene expression profiles correlating with the PAEP expression in the sporadic and familial non-BRCA1/2 breast cancers. Our findings suggest differential progression pathways in the sporadic and familial non-BRCA1/2 breast tumours expressing glycodelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seppälä M, Taylor RN, Koistinen H et al (2002) Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr Rev 23:401–430

    Article  PubMed  Google Scholar 

  2. Morris HR, Dell A, Easton RL et al (1996) Gender-specific glycosylation of human glycodelin affects its contraceptive activity. J Biol Chem 271:32159–32167

    Article  PubMed  CAS  Google Scholar 

  3. Yeung WS, Lee KF, Koistinen R et al (2009) Effects of glycodelins on functional competence of spermatozoa. J Reprod Immunol 83:26–30

    Article  PubMed  CAS  Google Scholar 

  4. Alok A, Karande AA (2009) The role of glycodelin as an immune-modulating agent at the feto-maternal interface. J Reprod Immunol 83:124–127

    Article  PubMed  CAS  Google Scholar 

  5. Seppälä M, Koistinen H, Koistinen R et al (2009) Glycodelin in reproductive endocrinology and hormone-related cancer. Eur J Endocrinol 160:121–133

    Article  PubMed  Google Scholar 

  6. Kamäräinen M, Seppälä M, Virtanen I et al (1997) Expression of glycodelin in MCF-7 breast cancer cells induces differentiation into organized acinar epithelium. Lab Invest 77:565–573

    PubMed  Google Scholar 

  7. Hautala LC, Koistinen R, Seppälä M et al (2008) Glycodelin reduces breast cancer xenograft growth in vivo. Int J Cancer 123:2279–2284

    Article  PubMed  CAS  Google Scholar 

  8. Koistinen H, Seppälä M, Nagy B et al (2005) Glycodelin reduces carcinoma-associated gene expression in endometrial adenocarcinoma cells. Am J Obstet Gynecol 193:1955–1960

    Article  PubMed  CAS  Google Scholar 

  9. Uchida H, Maruyama T, Nagashima T et al (2005) Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology 146:5365–5373

    Article  PubMed  CAS  Google Scholar 

  10. Ohta K, Maruyama T, Uchida H et al (2008) Glycodelin blocks progression to S phase and inhibits cell growth: a possible progesterone-induced regulator for endometrial epithelial cell growth gycodelin inhibits G1/S progression. Mol Hum Reprod 14:17–22

    Article  PubMed  CAS  Google Scholar 

  11. Koistinen H, Hautala LC, Seppälä M et al (2009) The role of glycodelin in cell differentiation and tumor growth. Scand J Clin Lab Invest 69:452–459

    Article  PubMed  CAS  Google Scholar 

  12. Mandelin E, Lassus H, Seppälä M et al (2003) Glycodelin in ovarian serous carcinoma: association with differentiation and survival. Cancer Res 63:6258–6264

    PubMed  CAS  Google Scholar 

  13. Kämäräinen M, Halttunen M, Koistinen R et al (1999) Expression of glycodelin in human breast and breast cancer. Int J Cancer 83:738–742

    Article  PubMed  Google Scholar 

  14. Jeschke U, Mylonas I, Kunert-Keil C et al (2005) Expression of glycodelin protein and mRNA in human ductal breast cancer carcinoma in situ, invasive ductal carcinomas, their lymph node and distant metastases, and ductal carcinomas with recurrence. Oncol Rep 13:413–419

    PubMed  CAS  Google Scholar 

  15. Scholz C, Toth B, Barthell E et al (2009) Immunohistochemical expression of glycodelin in breast cancer correlates with estrogen-receptor alpha and progesterone-receptor A positivity. Histol Histopathol 24:467–471

    PubMed  CAS  Google Scholar 

  16. Syrjäkoski K, Vahteristo P, Eerola H et al (2000) Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected Finnish breast cancer patients. J Natl Cancer Inst 92:1529–1531

    Article  PubMed  Google Scholar 

  17. Kilpivaara O, Bartkova J, Eerola H et al (2005) Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int J Cancer 113:575–580

    Article  PubMed  CAS  Google Scholar 

  18. Eerola H, Blomqvist C, Pukkala E et al (2000) Familial breast cancer in southern Finland: how prevalent are breast cancer families and can we trust the family history reported by patients? Eur J Cancer 36:1143–1148

    Article  PubMed  CAS  Google Scholar 

  19. Vehmanen P, Friedman LS, Eerola H et al (1997) Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes. Hum Mol Genet 6:2309–2315

    Article  PubMed  CAS  Google Scholar 

  20. Vahteristo P, Eerola H, Tamminen A et al (2001) A probability model for predicting BRCA1 and BRCA2 mutations in breast and breast-ovarian cancer families. Br J Cancer 84:704–708

    Article  PubMed  CAS  Google Scholar 

  21. Vahteristo P, Bartkova J, Eerola H et al (2002) A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71:432–438

    Article  PubMed  CAS  Google Scholar 

  22. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  23. Tommiska J, Eerola H, Heinonen M et al (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11:5098–5103

    Article  PubMed  CAS  Google Scholar 

  24. Aaltonen K, Blomqvist C, Amini RM et al (2008) Familial breast cancers without mutations in BRCA1 or BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA mutation carriers. Clin Cancer Res 14:1976–1983

    Article  PubMed  CAS  Google Scholar 

  25. Ahlin C, Aaltonen K, Amini RM et al (2007) Ki67 and cyclin A as prognostic factors in early breast cancer. What are the optimal cut-off values? Histopathology 51:491–498

    Article  PubMed  CAS  Google Scholar 

  26. Heikkinen T, Kärkkäinen H, Aaltonen K et al (2009) The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 15:3214–3222

    Article  PubMed  CAS  Google Scholar 

  27. Blows FM, Driver KE, Schmidt MK et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279

    Google Scholar 

  28. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072

    Article  PubMed  Google Scholar 

  29. Eerola H, Heikkilä P, Tamminen A et al (2005) Relationship of patients’ age to histopathological features of breast tumours in BRCA1 and BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 7:R465–R469

    Article  PubMed  CAS  Google Scholar 

  30. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  31. Du P, Kibbe WA, Lin SM (2008) Lumi: a pipeline for processing Illumina microarray. Bioinformatics 24:1547–1548

    Article  PubMed  CAS  Google Scholar 

  32. Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  33. Tatusova T (2010) Genomic databases and resources at the national center for biotechnology information. Methods Mol Biol 609:17–44

    Article  PubMed  CAS  Google Scholar 

  34. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  35. Aaltonen K, Amini RM, Landberg G et al (2009) Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer. Breast Cancer Res Treat 113:75–82

    Article  PubMed  CAS  Google Scholar 

  36. Ren S, Liu S, Howell PM Jr et al (2009) Functional characterization of the progestagen-associated endometrial protein gene in human melanoma. J Cell Mol Med. doi:10.1111/j.1582-4934.2009.00922.x

  37. Palacios J, Robles-Frias MJ, Castilla MA et al (2008) The molecular pathology of hereditary breast cancer. Pathobiology 75:85–94

    Article  PubMed  CAS  Google Scholar 

  38. Melchor L, Benitez J (2008) An integrative hypothesis about the origin and development of sporadic and familial breast cancer subtypes. Carcinogenesis 29:1475–1482

    Article  PubMed  CAS  Google Scholar 

  39. Waddell N, Arnold J, Cocciardi S et al (2009) Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res Treat. doi:10.1007/s10549-009-0653-1

  40. Fletcher O, Houlston RS (2010) Architecture of inherited susceptibility to common cancer. Nat Rev Cancer 10:353–361

    Article  PubMed  CAS  Google Scholar 

  41. Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Kirsimari Aaltonen and Karl von Smitten and RN Hanna Jäntti for their help with the patient data and specimens. The Finnish Cancer Registry is gratefully acknowledged for the cancer data. This work was supported by Helsinki University Central Hospital Research Fund, Academy of Finland (132473, 135937), the Finnish Cancer Society, the Sigrid Juselius Foundation and Magnus Ehrnrooth Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heli Nevanlinna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hautala, L.C., Greco, D., Koistinen, R. et al. Glycodelin expression associates with differential tumour phenotype and outcome in sporadic and familial non-BRCA1/2 breast cancer patients. Breast Cancer Res Treat 128, 85–95 (2011). https://doi.org/10.1007/s10549-010-1065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1065-y

Keywords

Navigation