Skip to main content

Advertisement

Log in

Ep-CAM RNA expression predicts metastasis-free survival in three cohorts of untreated node-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Epithelial cell adhesion molecule (Ep-CAM) recently received increased attention as a prognostic factor in breast cancer. We aimed to validate the influence of Ep-CAM RNA expression in untreated node-negative breast cancer. Ep-CAM RNA expression was evaluated utilizing microarray-based gene-expression profiling in 194 consecutive node-negative breast cancer patients with long-term follow-up not treated in the adjuvant setting. The prognostic significance of Ep-CAM RNA expression for disease-free survival (DFS), metastasis-free survival (MFS), and breast cancer-specific overall survival (OS) was evaluated in univariate and multivariate analysis adjusted for age, grading, pTstage, ER as well as PR receptor and HER-2 status. Additionally, Ep-CAM RNA expression was compared with immunohistochemistry (IHC) for Ep-CAM in 194 patients. The prognostic impact of Ep-CAM gene expression was validated in further 588 node-negative breast cancer patients. Levels of Ep-CAM RNA expression showed a significant correlation with IHC (P = 0.001) and predicted in univariate analysis DFS (P = 0.001, HR = 2.4), MFS (P = 0.003, HR = 2.5), and OS (P = 0.002, HR = 3.1) accurately. The prognostic influence of Ep-CAM RNA was significant also in multivariate analysis for DFS (P = 0.017, HR = 2.0), MFS (P = 0.049, HR = 1.9), and OS (P = 0.042, HR = 2.3), respectively. The association with MFS was confirmed in an independent validation cohort in univariate (P = 0.006, HR = 1.9) and multivariate (P = 0.035, HR = 1.7) analysis. Ep-CAM RNA correlated with the proliferation metagene (P < 0.001, R=0.425) Nevertheless, in multivariate analysis, Ep-CAM was associated with MFS independent from the proliferation metagene (P = 0.030, HR = 1.8). In conclusion, Ep-CAM RNA expression is associated with poor MFS in three cohorts of untreated node-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Litvinov SV, Velders MP, Bakker HA et al (1994) Ep-CAM: a human epithelial antigen is a homophilic cell–cell adhesion molecule. J Cell Biol 125:437–446

    Article  CAS  PubMed  Google Scholar 

  2. Naundorf S, Preithner S, Mayer P et al (2002) In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. Int J Cancer 100:101–110

    Article  CAS  PubMed  Google Scholar 

  3. Prang N, Preithner S, Brischwein K et al (2005) Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines. Br J Cancer 92:342–349

    CAS  PubMed  Google Scholar 

  4. Amann M, Brischwein K, Lutterbuese P et al (2008) Therapeutic window of MuS110, a single-chain antibody construct bispecific for murine EpCAM and murine CD3. Cancer Res 68:143–151

    Article  CAS  PubMed  Google Scholar 

  5. Sebastian M, Kiewe P, Schuette W et al (2009) Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (Removab) (anti-EpCAM x Anti-CD3): results of a phase 1/2 study. J Immunother 32:195–202

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt M, Scheulen ME, Dittrich C et al (2010) An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol 21:275–282

    Article  CAS  PubMed  Google Scholar 

  7. Gastl G, Spizzo G, Obrist P et al (2000) Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet 356:1981–1982

    Article  CAS  PubMed  Google Scholar 

  8. Spizzo G, Went P, Dirnhofer S et al (2004) High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 86:207–213

    Article  CAS  PubMed  Google Scholar 

  9. Hengstler JG, Bockamp EO, Hermes M et al (2006) Oncogene-blocking therapies: new insights from conditional mouse tumor models. Curr Cancer Drug Targets 6:603–612

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt M, Hasenclever D, Schaeffer M et al (2008) Prognostic effect of epithelial cell adhesion molecule overexpression in untreated node-negative breast cancer. Clin Cancer Res 14:5849–5855

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Klijn JGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    CAS  PubMed  Google Scholar 

  12. Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214

    Article  CAS  PubMed  Google Scholar 

  13. Loi S, Haibe-Kains B, Desmedt C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt M, Böhm D, von Törne C et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413

    Article  CAS  PubMed  Google Scholar 

  15. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072

    Article  PubMed  Google Scholar 

  16. Hengstler JG, Lange J, Kett A et al (1999) Contribution of c-erbB-2 and topoisomerase IIalpha to chemoresistance in ovarian cancer. Cancer Res 59:3206–3214

    CAS  PubMed  Google Scholar 

  17. Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt M, Hengstler JG, von Törne C et al (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69:2695–2698

    Article  CAS  PubMed  Google Scholar 

  19. Sieuwerts AM, Kraan J, Bolt J et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101:61–66

    CAS  PubMed  Google Scholar 

  20. Tanner B, Hasenclever D, Stern K et al (2006) ErbB-3 predicts survival in ovarian cancer. J Clin Oncol 24:4317–4323

    Article  CAS  PubMed  Google Scholar 

  21. Trzpis M, McLaughlin PMJ, de Leij LMFH et al (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395

    Article  CAS  PubMed  Google Scholar 

  22. Osta WA, Chen Y, Mikhitarian K et al (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824

    Article  CAS  PubMed  Google Scholar 

  23. Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24:1656–1664

    Article  CAS  PubMed  Google Scholar 

  24. Dai H, van’t Veer L, Lamb J et al (2005) A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res 65:4059–4066

    Article  CAS  PubMed  Google Scholar 

  25. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  CAS  PubMed  Google Scholar 

  26. Fan C, Oh D, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569

    Article  CAS  PubMed  Google Scholar 

  27. Münz M, Zeidler R, Gires O (2005) The tumour-associated antigen EpCAM upregulates the fatty acid binding protein E-FABP. Cancer Lett 225:151–157

    Article  PubMed  Google Scholar 

  28. Nübel T, Preobraschenski J, Tuncay H et al (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299

    Article  PubMed  Google Scholar 

  29. Ziegler A, Heidenreich R, Braumüller H et al (2009) EpCAM, a human tumor-associated antigen promotes Th2 development and tumor immune evasion. Blood 113:3494–3502

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt D-S, Klingbeil P, Schnölzer M et al (2004) CD44 variant isoforms associate with tetraspanins and EpCAM. Exp Cell Res 297:329–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the BMBF (NGFN project Oncoprofile). We thank Ms. Susanne Lindemann for competent bibliographic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Schmidt.

Additional information

An invited commentary to this article can be found at doi:10.1007/s10549-010-0932-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 156 kb)

Supplementary material 2 (PPT 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Petry, I.B., Böhm, D. et al. Ep-CAM RNA expression predicts metastasis-free survival in three cohorts of untreated node-negative breast cancer. Breast Cancer Res Treat 125, 637–646 (2011). https://doi.org/10.1007/s10549-010-0856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0856-5

Keywords

Navigation