Skip to main content

Advertisement

Log in

Transforming growth factor-β1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case–control studies

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The association between transforming growth factor-β1 (TGF-β1) gene polymorphisms and breast cancer risk has been widely reported, but results were somewhat controversial and underpowered. To derive a more precise estimation of the relationship between TGF-β1 polymorphisms and breast cancer risk, we conducted a meta-analysis of all available case–control studies relating the T869C and/or C-509T polymorphisms of the TGF-β1 gene to the risk of developing breast cancer. Eligible articles were identified by search of databases including MEDLINE, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM) for the period up to March 2010. Finally, a total of 17 articles involving 27 case–control studies were identified, 25 with 20,022 cases and 24,423 controls for T869C polymorphism and eight with 10,633 cases and 13,648 controls for C-509T polymorphism. The pooled ORs were performed for the allele contrasts, additive genetic model, dominant genetic model and recessive genetic model, respectively. Subgroup analysis was also performed by ethnicity for T869C polymorphism. With respect to T869C polymorphism, no association was found in overall analysis (C vs. T: OR = 1.033, 95% CI = 0.996–1.072). In the subgroup analysis by ethnicity, significantly increased risk was found in Caucasian population (C vs. T: OR = 1.051, 95% CI = 1.018–1.085; CC vs. TT + TC: OR = 1.083, 95% CI = 1.019–1.151), but not in Asian population (C vs. T: OR = 1.054, 95% CI = 0.983–1.130). With respect to C-509T polymorphism, no significant association with breast cancer risk was demonstrated in overall analysis (T vs. C: OR = 0.986, 95% CI = 0.936–1.039). It can be concluded that potentially functional TGF-Β1 T869C polymorphism may play a low penetrance role in breast cancer susceptibility in an ethnicity-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  2. Benson JR (2004) Role of transforming growth factor β in breast carcinogenesis. Lancet Oncol 5:229–239

    Article  CAS  PubMed  Google Scholar 

  3. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  CAS  PubMed  Google Scholar 

  4. Massagué J (2008) TGFbeta in cancer. Cell 134:215–230

    Article  PubMed  CAS  Google Scholar 

  5. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  6. Desruisseau S, Palmari J, Giusti C, Romain S, Martin P-M, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246

    Article  CAS  PubMed  Google Scholar 

  7. Grau AM, Wen W, Ramroopsignh D, Gao YT, Zi J, Cai Q, Shu XO, Zheng W (2008) Circulating transforming growth factor-beta 1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 112:335–341

    Article  CAS  PubMed  Google Scholar 

  8. Zheng W (2009) Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol 472:265–277

    Article  CAS  PubMed  Google Scholar 

  9. Fujii D, Brissenden JE, Derynck R, Francke U (1986) Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12:218–281

    Article  Google Scholar 

  10. Chang SJ, Chen CJ, Tsai FC, Lai HM, Tsai PC, Tsai MH, Ko YC (2008) Associations between gout tophus and polymorphisms 869T/C and −509C/T in transforming growth factor beta1 gene. Rheumatology (Oxford) 47:617–621

    Article  CAS  Google Scholar 

  11. Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL, Mao L, Wang XS, Martel M, Komaki R, Cox JD, Milas L, Wei Q (2009) Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 27:3370–3378

    Article  CAS  PubMed  Google Scholar 

  12. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97

    Article  CAS  PubMed  Google Scholar 

  13. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC (2003) A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615

    CAS  PubMed  Google Scholar 

  14. Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, Yang G, Jin F, Zheng W (2004) Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai breast cancer study. Cancer Res 64:836–839

    Article  CAS  PubMed  Google Scholar 

  15. González-Zuloeta Ladd AM, Arias-Vásquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, Uitterlinden A, Stricker BH, van Duijn CM (2007) Transforming-growth factor beta1 Leu10Pro polymorphism and breast cancer morbidity. Eur J Cancer 43:371–374

    Article  PubMed  CAS  Google Scholar 

  16. Wei BB, Xi B, Wang R, Bai JM, Chang JK, Zhang YY, Yoneda R, Su JT, Hua LX (2010) TGFbeta1 T29C polymorphism and cancer risk: a meta-analysis based on 40 case-control studies. Cancer Genet Cytogenet 196:68–75

    Google Scholar 

  17. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  CAS  PubMed  Google Scholar 

  18. Gonullu G, Basturk B, Evrensel T, Oral B, Gozkaman A, Manavoglu O (2007) Association of breast cancer and cytokine gene polymorphism in Turkish women. Saudi Med J 28:1728–1733

    PubMed  Google Scholar 

  19. Rajkumar T, Samson M, Rama R, Sridevi V, Mahji U, Swaminathan RK, Nancy N (2008) TGFb1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFb1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy. Breast Cancer Res Treat 112:81–87

    Article  CAS  PubMed  Google Scholar 

  20. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  CAS  PubMed  Google Scholar 

  21. Little J, Bradley L, Bray MS, Clyne M, Dorman J, Ellsworth DL, Hanson J, Khoury M, Lau J, O’Brien TR, Rothman N, Stroup D, Taioli E, Thomas D, Vainio H, Wacholder S, Weinberg C (2002) Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am J Epidemiol 156:300–310

    PubMed  Google Scholar 

  22. Qi X, Ma X, Yang X, Fan L, Zhang Y, Zhang F, Chen L, Zhou Y, Jiang J (2010) Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat. doi:10.1007/s10549-010-0773-7

  23. Ma X, Qi X, Chen C, Lin H, Xiong H, Li Y, Jiang J (2010) Association between CYP19 polymorphisms and breast cancer risk: results from 10592 cases and 11720 controls. Breast Cancer Res Treat. doi:10.1007/s10549-009-0693-6

  24. Ma X, Chen C, Xiong H, Fan J, Li Y, Lin H, Xu R, Huang G, Xu B (2010) No association between SOD2 Val16Ala polymorphism and breast cancer susceptibility: a meta-analysis based on 9,710 cases and 11,041 controls. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0725-2

  25. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  26. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28:105–114

    Article  PubMed  Google Scholar 

  27. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  28. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS (2001) Association between the T29 → C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. JAMA 285:2859–2863

    Article  CAS  PubMed  Google Scholar 

  29. Sigurdson AJ, Hauptmann M, Chatterjee N, Alexander BH, Doody MM, Rutter JL, Struewing JP (2004) Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes. BMC Cancer 4:9. doi:10.1186/1471-2407-4-9

    Article  PubMed  Google Scholar 

  30. Skerrett DL, Moore EM, Bernstein DS (2005) Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-β 1 with relapse. Cancer Investig 23:208–214

    Article  CAS  Google Scholar 

  31. Rebbeck TR, Antoniou AC, Llopis TC, Nevanlinna H, Aittomäki K, Simard J, Spurdle AB, KConFab, Couch FJ, Pereira LH et al (2009) No association of TGFB1 L10P genotypes and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a multi-center cohort study. Breast Cancer Res Treat 115:185–192

    Article  CAS  PubMed  Google Scholar 

  32. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA, SEARCH Investigators (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42. doi:10.1371/journal.pgen.0030042

    Article  PubMed  CAS  Google Scholar 

  33. Hishida A, Iwata H, Hamajima N, Matsuo K, Mizutani M, Iwase T, Miura S, Emi N, Hirose K, Tajima K (2003) Transforming growth factor B1 T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer 10:63–69

    Article  PubMed  Google Scholar 

  34. Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Bahadori B, Samonigg H (2003) The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett 201:181–184

    Article  CAS  PubMed  Google Scholar 

  35. Jin Q, Hemminki K, Grzybowska E, Klaes R, Soderberg M, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Forsti A (2004) Polymorphisms and haplotype structures in genes for transforming growth factor beta1 and its receptors in familial and unselected breast cancers. Int J Cancer 112:94–99

    Article  CAS  PubMed  Google Scholar 

  36. Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE (2004) T29C polymorphism in the transforming growth factorβ 1 gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 13:412–415

    CAS  PubMed  Google Scholar 

  37. Saha A, Gupta V, Bairwa NK, Malhotra D, Bamezai R (2004) Transforming growth factor-β 1 genotype in sporadic breast cancer patients from India: status of enhancer, promoter, 5′-untranslated-region and exon-1 polymorphisms. Eur J Immunogenet 31:37–42

    Article  CAS  PubMed  Google Scholar 

  38. Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, Hegarty C, McDaniel B, Rademaker A, Oddoux C, Ostrer H, Michel LS, Huang H, Chen Y, Ahsan H, Offit K, Pasche B (2005) Combined genetic assessment of transforming growth factor-β signaling pathway variants may predict breast cancer risk. Cancer Res 65:3454–3461

    CAS  PubMed  Google Scholar 

  39. Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH, Hir-vonen A, Kang D (2005) Genetic polymorphisms of TGF-β1 & TNF-β and breast cancer risk. Breast Cancer Res Treat 90:149–155

    Article  CAS  PubMed  Google Scholar 

  40. Shin A, Shu XO, Cai Q, Gao YT, Zheng W (2005) Genetic polymorphisms of the transforming growth factor-β1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 14:1567–1570

    Article  CAS  PubMed  Google Scholar 

  41. Feigelson HS, Patel AV, Diver WR, Stevens VL, Thun MJ, Calle EE (2006) Transforming growth factorβ receptor type I and transforming growth factorβ 1 polymorphisms are not associated with postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 15:1236–1237

    Article  CAS  PubMed  Google Scholar 

  42. Scola L, Vaglica M, Crivello A, Palmeri L, Forte GI, Macaluso MC, Giacalone A, Di Noto L, Bongiovanni A, Raimondi C, Accardo A, Verna R, Candore G, Caruso C, Lio D, Palmeri S (2006) Cytokine gene polymorphisms and breast cancer susceptibility. Ann N Y Acad Sci 1089:104–109

    Article  CAS  PubMed  Google Scholar 

  43. Cox D, Penney K, Guo Q, Hankinson S, Hunter D (2007) TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the nurses’ health study. BMC Cancer 7:175. doi:10.1186/1471-2407-7-175

    Article  PubMed  CAS  Google Scholar 

  44. Jakubowska A, Jaworska K, Cybulski C, Janicka A, Szymańska-Pasternak J, Lener M, Narod SA, Lubiński J, IHCC-Breast Cancer Study Group (2009) Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer 45:837–842

    Article  CAS  PubMed  Google Scholar 

  45. The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk (2009) Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women. Breast Cancer Res Treat. doi:10.1007/s10549-009-0489-8

  46. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  47. Lichtenstein P, Holm NV, Verkasalo PK (2000) Environmental and heritable factors in the causation of cancer. N Engl J Med 343:78–85

    Article  CAS  PubMed  Google Scholar 

  48. Sergentanis TN, Economopoulos KP (2010) Association of two CASP8 polymorphisms with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 120:229–234

    Article  CAS  PubMed  Google Scholar 

  49. Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. doi:10.1007/s10549-009-0694-5

  50. Qiu LX, Yao L, Yuan H, Mao C, Chen B, Zhan P, Xue K, Zhang J, Hu XC (2010) IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls. Breast Cancer Res Treat. doi:10.1007/s10549-010-0739-9

  51. Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98:1382–1396

    Article  Google Scholar 

  52. Janssens AC, González-Zuloeta Ladd AM, López-Léon S, Ioannidis JP, Oostra BA, Khoury MJ, van Duijn CM (2009) An empirical comparison of meta-analyses of published gene-disease associations versus consortium analyses. Genet Med 11:153–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Paul Pharoah, from Departments of Oncology and Public Health and Primary Care, University of Cambridge, England, for interpreting the overlapping dada of Studies of Epidemiology and Risk Factors in Cancer Heredity and relative concepts via e-mail during the manuscript writing. This work was not supported by any funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jiang.

Additional information

Xiaowei Qi and Fan Zhang contributed equally to this article and should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, X., Zhang, F., Yang, X. et al. Transforming growth factor-β1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case–control studies. Breast Cancer Res Treat 122, 273–279 (2010). https://doi.org/10.1007/s10549-010-0847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0847-6

Keywords

Navigation