Skip to main content

Advertisement

Log in

Targeting trastuzumab-resistant breast cancer cells with a lentivirus engineered to bind antibodies that recognize HER-2

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Targeting HER-2 over-expressing breast cancer cells with trastuzumab has resulted in significant improvements in both disease-free and overall survival rates. However, despite a favorable initial response, some cancer cells become resistant and develop into fatal metastatic disease. Here we report that we can specifically target HER-2 over-expressing and trastuzumab-resistant breast cancer cells by using an engineered lentivirus which has trastuzumab bound to its envelope. In vitro, this lentiviral construct mediated both the expression of reporter genes, such as enhanced green fluorescent protein (EGFP) and firefly luciferase, as well as the therapeutic gene, herpes thymidine kinase (hTK), in HER-2 over-expressing cells. Subsequent application of the pro-drug ganciclovir selectively killed breast cancer cells in which lentivirus mediated expression of hTK. In vivo, we successfully targeted the expression of firefly luciferase to trastuzumab-resistant breast cancer tumors established in nude mice. Furthermore, we found that systemic administration of trastuzumab-bound lentivirus led to expression of EGFP in circulating trastuzumab-resistant breast cancer cells. In conclusion, HER-2 over-expressing breast cancer cells resistant to trastuzumab can be targeted for selective gene expression and destruction by viruses with envelope-proteins engineered to bind to this antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Lower EE, Glass E, Blau R et al (2009) HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res Treat 113:301–306

    Article  CAS  PubMed  Google Scholar 

  3. Riou G, Mathieu MC, Barrois M et al (2001) c-erbB-2 (HER-2/neu) gene amplification is a better indicator of poor prognosis than protein over-expression in operable breast-cancer patients. Int J Cancer 95:266–270

    Article  CAS  PubMed  Google Scholar 

  4. Hanna W, Kahn HJ, Trudeau M (1999) Evaluation of HER-2/neu (erbB-2) status in breast cancer: from bench to bedside. Mod Pathol 12:827–834

    CAS  PubMed  Google Scholar 

  5. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  6. Winer EP, Burstein HJ (2001) New combinations with Herceptin in metastatic breast cancer. Oncology 61(Suppl 2):50–57

    Article  CAS  PubMed  Google Scholar 

  7. Baselga J (2001) Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology 61(Suppl 2):14–21

    Article  CAS  PubMed  Google Scholar 

  8. Pegram MD, Slamon DJ (1999) Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 26:89–95

    CAS  PubMed  Google Scholar 

  9. Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    CAS  PubMed  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  11. Braun S, Naume B (2005) Circulating and disseminated tumor cells. J Clin Oncol 23:1623–1626

    Article  PubMed  Google Scholar 

  12. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  Google Scholar 

  13. Morizono K, Xie Y, Ringpis GE et al (2005) Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 11:346–352

    Article  CAS  PubMed  Google Scholar 

  14. Aires da Silva F, Costa MJ, Corte-Real S et al (2005) Cell type-specific targeting with Sindbis pseudotyped lentiviral vectors displaying anti-CCR5 single-chain antibodies. Hum Gene Ther 16:223–234

    Article  CAS  PubMed  Google Scholar 

  15. Morizono K, Bristol G, Xie YM et al (2001) Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 75:8016–8020

    Article  CAS  PubMed  Google Scholar 

  16. Klimstra WB, Williams JC, Ryman KD et al (2005) Targeting Sindbis virus-based vectors to Fc receptor-positive cell types. Virology 338:9–21

    Article  CAS  PubMed  Google Scholar 

  17. Pariente N, Morizono K, Virk MS et al (2007) A novel dual-targeted lentiviral vector leads to specific transduction of prostate cancer bone metastases in vivo after systemic administration. Mol Ther 15:1973–1981

    Article  CAS  PubMed  Google Scholar 

  18. Nahta R, Yu D, Hung MC et al (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280

    Article  CAS  PubMed  Google Scholar 

  19. Zhang KX, Moussavi M, Kim C et al (2009) Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Cancer Gene Ther 16:820–831

    Article  CAS  PubMed  Google Scholar 

  20. Niehans GA, Singleton TP, Dykoski D et al (1993) Stability of HER-2/neu expression over time and at multiple metastatic sites. J Natl Cancer Inst 85:1230–1235

    Article  CAS  PubMed  Google Scholar 

  21. Murphy CG, Modi S (2009) HER2 breast cancer therapies: a review. Biologics 3:289–301

    CAS  PubMed  Google Scholar 

  22. King GD, Muhammad AK, Xiong W et al (2008) High-capacity adenovirus vector-mediated anti-glioma gene therapy in the presence of systemic antiadenovirus immunity. J Virol 82:4680–4684

    Article  CAS  PubMed  Google Scholar 

  23. Raki M, Hakkarainen T, Bauerschmitz GJ et al (2007) Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther 14:1380–1388

    Article  CAS  PubMed  Google Scholar 

  24. Straathof KC, Spencer DM, Sutton RE et al (2003) Suicide genes as safety switches in T lymphocytes. Cytotherapy 5:227–230

    Article  CAS  PubMed  Google Scholar 

  25. Golumbek PT, Hamzeh FM, Jaffee EM et al (1992) Herpes simplex-1 virus thymidine kinase gene is unable to completely eliminate live, nonimmunogenic tumor cell vaccines. J Immunother 12:224–230

    Article  CAS  PubMed  Google Scholar 

  26. Touraine RL, Ishii-Morita H, Ramsey WJ et al (1998) The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther 5:1705–1711

    Article  CAS  PubMed  Google Scholar 

  27. Fulci G, Breymann L, Gianni D et al (2006) Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 103:12873–12878

    Article  CAS  PubMed  Google Scholar 

  28. Fulci G, Dmitrieva N, Gianni D et al (2007) Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res 67:9398–9406

    Article  CAS  PubMed  Google Scholar 

  29. Borok Z, Harboe-Schmidt JE, Brody SL et al (2001) Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells. J Virol 75:11747–11754

    Article  CAS  PubMed  Google Scholar 

  30. Schnell T, Foley P, Wirth M et al (2000) Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11:439–447

    Article  CAS  PubMed  Google Scholar 

  31. Cattaneo R, Miest T, Shashkova EV et al (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 6:529–540

    Article  CAS  PubMed  Google Scholar 

  32. Slamon DJ (1990) Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Invest 8:253

    Article  CAS  PubMed  Google Scholar 

  33. Paik S, Hazan R, Fisher ER et al (1990) Pathologic findings from the national surgical adjuvant breast and bowel project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112

    CAS  PubMed  Google Scholar 

  34. Eccles SA (2001) The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia 6:393–406

    Article  CAS  PubMed  Google Scholar 

  35. Nahta R, Takahashi T, Ueno NT et al (2004) P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64:3981–3986

    Article  CAS  PubMed  Google Scholar 

  36. Bergman I, Whitaker-Dowling P, Gao Y et al (2003) Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells. Virology 316:337–347

    Article  CAS  PubMed  Google Scholar 

  37. Hadaschik BA, Zhang K, So AI et al (2008) Oncolytic vesicular stomatitis viruses as intravesical agents against non-muscle-invasive bladder cancer. Urologe A 47:1145–1151

    Article  CAS  PubMed  Google Scholar 

  38. Hadaschik BA, Zhang K, So AI et al (2008) Oncolytic vesicular stomatitis viruses are potent agents for intravesical treatment of high-risk bladder cancer. Cancer Res 68:4506–4510

    Article  CAS  PubMed  Google Scholar 

  39. Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Terry Fox Foundation. The authors also thank Rowena Lee of the BC Cancer Agency for providing the trastuzumab, Dr. Dieter Fink for providing vectors expressing EGFP and Bsr, as well as Dr Robert Snoek, Jessica Firus, and Brenda Prieur for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Rennie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Kx., Kim, C., Chow, E. et al. Targeting trastuzumab-resistant breast cancer cells with a lentivirus engineered to bind antibodies that recognize HER-2. Breast Cancer Res Treat 125, 89–97 (2011). https://doi.org/10.1007/s10549-010-0828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0828-9

Keywords

Navigation