Skip to main content

Advertisement

Log in

Health disparities in breast cancer: biology meets socioeconomic status

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer in women worldwide, accounting for just over 1 million new cases annually. Population-based statistics show that globally, when compared to whites, women of African ancestry (AA) tend to have more aggressive breast cancers that present more frequently as estrogen receptor negative (ERneg) tumors. ERneg tumors fail to respond to current established targeted therapies, whether for treatment or prevention. Subsets of the ERneg phenotype include those that are also negative for the progesterone receptor (PR) and HER2; these are called “triple negative” (TN) breast cancers. TN tumors frequently have pathological characteristics resembling “basal-like” breast cancers. Hence, the latter two terms are often used interchangeably; yet, despite extensive overlap, they are not synonymous. The ERneg, TN, and basal-like phenotypic categories are important because they carry worse prognoses than ER-positive (ERpos) tumors, in addition to lacking obvious molecular targets, such as HER2 and the ER, for known therapies. Furthermore, among premenopausal women the three subsets occur more frequently in women of African descent compared to white women with breast cancer. The contribution of these three subtypes of poor-prognosis tumors to the higher breast cancer mortality in black women is the focus of this review. We will attempt to clarify some of the issues, including risk factors, in terms of their contribution to that component of health disparities that involves biological differences in breast cancer between women of AA and white women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Browne D (2008) Public Health Democracy: U.S. and Global Health Disparities in Breast Cancer. Woodrow Wilson International Center for Scholars, Global Health Initiative, Washington, DC www.wilsoncenter.org/globalhealth

  2. Anderson WF, Rosenberg PS, Menashe I, Mitani A, Pfeiffer RM (2008) Age-related crossover in breast cancer incidence rates between black and white ethnic groups. J Natl Cancer Inst 100:1804–1814. doi:10.1093/jnci/djn411

    Article  PubMed  Google Scholar 

  3. Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100:1643–1648. doi:10.1093/jnci/djn344

    Article  PubMed  Google Scholar 

  4. Morris GJ, Mitchell EP (2008) Higher incidence of aggressive breast cancers in African–American women: a review. J Natl Med Assoc 100:698–702

    PubMed  Google Scholar 

  5. McBride R, Hershman D, Tsai WY, Jacobson JS, Grann V, Neugut AI (2007) Within-stage racial differences in tumor size and number of positive lymph nodes in women with breast cancer. Cancer 110:1201–1208. doi:10.1002/cncr.22884

    Article  PubMed  Google Scholar 

  6. ACS (2009) Cancer facts & figures 2009. American Cancer Society, Atlanta, GA. [http://www.cancer.org/downloads/STT/cffaa_2009-2010.pdf]

  7. Harper S, Lynch J, Meersman SC, Breen N, Davis WW, Reichman MC (2009) Trends in area-socioeconomic and race-ethnic disparities in breast cancer incidence, stage at diagnosis, screening, mortality, and survival among women ages 50 years and over (1987–2005). Cancer Epidemiol Biomarkers Prev 18:121–131. doi:10.1158/1055-9965.EPI-08-0679

    Article  PubMed  Google Scholar 

  8. Haas JS, Earle CC, Orav JE, Brawarsky P, Keohane M, Neville BA, Williams DR (2008) Racial segregation and disparities in breast cancer care and mortality. Cancer 113:2166–2172. doi:10.1002/cncr.23828

    Article  PubMed  Google Scholar 

  9. Hershman DL, Unger JM, Barlow WE, Hutchins LF et al (2009) Treatment quality and outcomes of African American versus white breast cancer patients: retrospective analysis of Southwest oncology studies S8814/S8897. J Clin Oncol 27:2157–2162. doi:10.1200/JCO.2008.19.1163

    Article  PubMed  Google Scholar 

  10. Porter PL, Garcia R, Moe R, Corwin DJ, Gown AM (1991) C-erbB-2 oncogene protein in in situ and invasive lobular breast neoplasia. Cancer 68:331–334

    Article  CAS  PubMed  Google Scholar 

  11. Porter PL, Lund MJ, Lin MG, Yuan X et al (2004) Racial differences in the expression of cell cycle-regulatory proteins in breast carcinoma. Cancer 100:2533–2542. doi:10.1002/cncr.20279

    Article  PubMed  Google Scholar 

  12. Amend K, Hicks D, Ambrosone CB (2006) Breast cancer in African–American women: differences in tumor biology from European–American women. Cancer Res 66:8327–8330. doi:10.1158/0008-5472.CAN-06-1927

    Article  CAS  PubMed  Google Scholar 

  13. Carey LA, Perou CM, Livasy CA, Dressler LG et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi:10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  14. Ihemelandu CU, Leffall LD Jr, Dewitty RL, Naab TJ et al (2007) Molecular breast cancer subtypes in premenopausal African–American women, tumor biologic factors and clinical outcome. Ann Surg Oncol 14:2994–3003. doi:10.1245/s10434-007-9477-6

    Article  PubMed  Google Scholar 

  15. Ihemelandu CU, Naab TJ, Mezghebe HM, Makambi KH et al (2008) Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women. Am J Surg 195:153–158. doi:10.1016/j.amjsurg.2007.09.033

    Article  PubMed  Google Scholar 

  16. Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ et al (2004) Estrogen receptor/progesterone receptor-negative breast cancers of young African–American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10:2052–2057

    Article  CAS  PubMed  Google Scholar 

  17. Nalwoga H, Arnes JB, Wabinga H, Akslen LA (2007) Frequency of the basal-like phenotype in African breast cancer. APMIS 115:1391–1399. doi:10.1111/j.1600-0463.2007.00862.x

    Article  PubMed  Google Scholar 

  18. Bowen RL, Duffy SW, Ryan DA, Hart IR, Jones JL (2008) Early onset of breast cancer in a group of British black women. Br J Cancer 98:277–281. doi:10.1038/sj.bjc.6604174

    Article  CAS  PubMed  Google Scholar 

  19. Hennis AJ, Hambleton IR, Wu SY, Leske MC, Nemesure B (2009) Breast cancer incidence and mortality in a Caribbean population: comparisons with African–Americans. Int J Cancer 124:429–433. doi:10.1002/ijc.23889

    Article  CAS  PubMed  Google Scholar 

  20. Schneider BP, Winer EP, Foulkes WD, Garber J et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018. doi:10.1158/1078-0432.CCR-08-1208

    Article  CAS  PubMed  Google Scholar 

  21. Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118. doi:10.1111/j.1365-2559.2007.02889.x

    Article  CAS  PubMed  Google Scholar 

  22. Nagle RB, Bocker W, Davis JR, Heid HW, Kaufmann M, Lucas DO, Jarasch ED (1986) Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem 34:869–881

    CAS  PubMed  Google Scholar 

  23. Dairkee S, Heid HW (1993) Cytokeratin profile of immunomagnetically separated epithelial subsets of the human mammary gland. In Vitro Cell Dev Biol Anim 29A:427–432

    Article  CAS  PubMed  Google Scholar 

  24. Gusterson BA, Ross DT, Heath VJ, Stein T (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7:143–148. doi:10.1186/bcr1041

    Article  CAS  PubMed  Google Scholar 

  25. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49:22–34. doi:10.1111/j.1365-2559.2006.02453.x

    Article  CAS  PubMed  Google Scholar 

  26. Moll R (1998) Cytokeratins as markers of differentiation in the diagnosis of epithelial tumors. Subcell Biochem 31:205–262

    CAS  PubMed  Google Scholar 

  27. van de Rijn M, Perou CM, Tibshirani R, Haas P et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    PubMed  Google Scholar 

  28. Nielsen TO, Hsu FD, Jensen K, Cheang M et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374. doi:10.1158/1078-0432.CCR-04-0220

    Article  CAS  PubMed  Google Scholar 

  29. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581. doi:10.1200/JCO.2007.13.1748

    Article  PubMed  Google Scholar 

  30. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271. doi:10.1038/modpathol.3800528

    Article  CAS  PubMed  Google Scholar 

  31. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244. doi:10.1016/S1470-2045(07)70074-8

    Article  PubMed  Google Scholar 

  32. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800. doi:10.1056/NEJMra0801289

    Article  CAS  PubMed  Google Scholar 

  33. Prat A, Perou CM (2009) Mammary development meets cancer genomics. Nat Med 15:842–844. doi:10.1038/nm0809-842

    Article  CAS  PubMed  Google Scholar 

  34. Lim E, Vaillant F, Wu D, Forrest NC et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913. doi:10.1038/nm.2000

    Article  CAS  PubMed  Google Scholar 

  35. Foulkes WD, Stefansson IM, Chappuis PO, Begin LR et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485

    CAS  PubMed  Google Scholar 

  36. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180. doi:10.1158/1078-0432.CCR-04-2424

    Article  CAS  PubMed  Google Scholar 

  37. Atchley DP, Albarracin CT, Lopez A, Valero V et al (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288. doi:10.1200/JCO.2008.16.6231

    Article  PubMed  Google Scholar 

  38. Perou CM, Sorlie T, Eisen MB, van de Rijn M et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  39. Sorlie T, Perou CM, Tibshirani R, Aas T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098

    Article  CAS  PubMed  Google Scholar 

  40. Foekens JA, Atkins D, Zhang Y, Sweep FC et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671. doi:10.1200/JCO.2005.03.9115

    Article  CAS  PubMed  Google Scholar 

  41. Tavtigian SV, Pierotti MA, Borresen-Dale AL (2006) International Agency for Research on Cancer workshop on ‘Expression array analyses in breast cancer taxonomy’. Breast Cancer Res 8:303. doi:10.1186/bcr1609

    Article  PubMed  Google Scholar 

  42. Parker JS, Mullins M, Cheang MC, Leung S et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167. doi:10.1200/JCO.2008.18.1370

    Article  PubMed  Google Scholar 

  43. Bidard FC, Conforti R, Boulet T, Michiels S, Delaloge S, Andre F (2007) Does triple-negative phenotype accurately identify basal-like tumour? An immunohistochemical analysis based on 143 ‘triple-negative’ breast cancers. Ann Oncol 18:1285–1286. doi:10.1093/annonc/mdm360

    Article  PubMed  Google Scholar 

  44. Cheang MC, Voduc D, Bajdik C, Leung S et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376. doi:10.1158/1078-0432.CCR-07-1658

    Article  CAS  PubMed  Google Scholar 

  45. Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V (2008) The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999–2004. Cancer 112:737–747. doi:10.1002/cncr.23243

    Article  PubMed  Google Scholar 

  46. Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagyi GN (2008) Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist 13:477–493. doi:10.1634/theoncologist.2007-0248

    Article  PubMed  Google Scholar 

  47. Yamamoto Y, Ibusuki M, Nakano M, Kawasoe T, Hiki R, Iwase H (2009) Clinical significance of basal-like subtype in triple-negative breast cancer. Breast Cancer 16:260–267. doi:10.1007/s12282-009-0150-8

    Article  PubMed  Google Scholar 

  48. Chlebowski RT, Chen Z, Anderson GL, Rohan T et al (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97:439–448. doi:10.1093/jnci/dji064

    Article  PubMed  Google Scholar 

  49. Jumppanen M, Gruvberger-Saal S, Kauraniemi P, Tanner M et al (2007) Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res 9:R16. doi:10.1186/bcr1649

    Article  PubMed  CAS  Google Scholar 

  50. Millikan RC, Newman B, Tse CK, Moorman PG et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139. doi:10.1007/s10549-007-9632-6

    Article  PubMed  Google Scholar 

  51. Ursin G, Bernstein L, Lord SJ, Karim R et al (2005) Reproductive factors and subtypes of breast cancer defined by hormone receptor and histology. Br J Cancer 93:364–371. doi:10.1038/sj.bjc.6602712

    Article  CAS  PubMed  Google Scholar 

  52. Yang XR, Sherman ME, Rimm DL, Lissowska J et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16:439–443. doi:10.1158/1055-9965.EPI-06-0806

    Article  CAS  PubMed  Google Scholar 

  53. Ma H, Bernstein L, Pike MC, Ursin G (2006) Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 8:R43. doi:10.1186/bcr1525

    Article  PubMed  CAS  Google Scholar 

  54. Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113:1521–1526. doi:10.1002/cncr.23786

    Article  PubMed  Google Scholar 

  55. Clegg LX, Reichman ME, Miller BA, Hankey BF et al (2009) Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control 20:417–435. doi:10.1007/s10552-008-9256-0

    Article  PubMed  Google Scholar 

  56. Gordon NH (1995) Association of education and income with estrogen receptor status in primary breast cancer. Am J Epidemiol 142:796–803

    CAS  PubMed  Google Scholar 

  57. Taylor A, Cheng KK (2003) Social deprivation and breast cancer. J Public Health Med 25:228–233

    Article  PubMed  Google Scholar 

  58. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109:1721–1728. doi:10.1002/cncr.22618

    Article  PubMed  Google Scholar 

  59. Parise CA, Bauer KR, Brown MM, Caggiano V (2009) Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J 15:593–602. doi:10.1111/j.1524-4741.2009.00822.x

    Article  PubMed  Google Scholar 

  60. Fung TT, Hu FB, Holmes MD, Rosner BA, Hunter DJ, Colditz GA, Willett WC (2005) Dietary patterns and the risk of postmenopausal breast cancer. Int J Cancer 116:116–121. doi:10.1002/ijc.20999

    Article  CAS  PubMed  Google Scholar 

  61. Fung TT, Hu FB, McCullough ML, Newby PK, Willett WC, Holmes MD (2006) Diet quality is associated with the risk of estrogen receptor-negative breast cancer in postmenopausal women. J Nutr 136:466–472

    CAS  PubMed  Google Scholar 

  62. Agurs-Collins T, Rosenberg L, Makambi K, Palmer JR, Adams-Campbell L (2009) Dietary patterns and breast cancer risk in women participating in the Black Women’s Health Study. Am J Clin Nutr 90:621–628. doi:10.3945/ajcn.2009.27666

    Article  CAS  PubMed  Google Scholar 

  63. Touillaud MS, Pillow PC, Jakovljevic J, Bondy ML, Singletary SE, Li D, Chang S (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr Cancer 51:162–169. doi:10.1207/s15327914nc5102_6

    Article  CAS  PubMed  Google Scholar 

  64. McCann SE, Kulkarni S, Trevisan M, Vito D et al (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99:309–311. doi:10.1007/s10549-006-9196-x

    Article  CAS  PubMed  Google Scholar 

  65. Zhang M, Yang H, Holman CD (2009) Dietary intake of isoflavones and breast cancer risk by estrogen and progesterone receptor status. Breast Cancer Res Treat 118:553–563

    Article  CAS  PubMed  Google Scholar 

  66. Zhang SM, Hankinson SE, Hunter DJ, Giovannucci EL, Colditz GA, Willett WC (2005) Folate intake and risk of breast cancer characterized by hormone receptor status. Cancer Epidemiol Biomarkers Prev 14:2004–2008. doi:10.1158/1055-9965.EPI-05-0083

    Article  CAS  PubMed  Google Scholar 

  67. Maruti SS, Ulrich CM, White E (2009) Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89:624–633. doi:10.3945/ajcn.2008.26568

    Article  CAS  PubMed  Google Scholar 

  68. Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, Macinnis RJ, Hopper JL (2006) Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer 118:1843–1847. doi:10.1002/ijc.21548

    Article  CAS  PubMed  Google Scholar 

  69. Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A (2009) Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr 90:664–671. doi:10.3945/ajcn.2009.27758

    Article  CAS  PubMed  Google Scholar 

  70. Larsson SC, Bergkvist L, Wolk A (2009) Long-term dietary calcium intake and breast cancer risk in a prospective cohort of women. Am J Clin Nutr 89:277–282. doi:10.3945/ajcn.2008.26704

    Article  CAS  PubMed  Google Scholar 

  71. Sellers TA, Vierkant RA, Cerhan JR, Gapstur SM et al (2002) Interaction of dietary folate intake, alcohol, and risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Cancer Epidemiol Biomarkers Prev 11:1104–1107

    CAS  PubMed  Google Scholar 

  72. Robien K, Cutler GJ, Lazovich D (2007) Vitamin D intake and breast cancer risk in postmenopausal women: the Iowa Women’s Health Study. Cancer Causes Control 18:775–782. doi:10.1007/s10552-007-9020-x

    Article  PubMed  Google Scholar 

  73. Blackmore KM, Lesosky M, Barnett H, Raboud JM, Vieth R, Knight JA (2008) Vitamin D from dietary intake and sunlight exposure and the risk of hormone-receptor-defined breast cancer. Am J Epidemiol 168:915–924. doi:10.1093/aje/kwn198

    Article  PubMed  Google Scholar 

  74. Rainville C, Khan Y, Tisman G (2009) Triple negative breast cancer patients presenting with low serum vitamin D levels: a case series. Cases J 2:8390. doi:10.4076/1757-1626-2-8390

    Article  PubMed  Google Scholar 

  75. Dallal CM, Sullivan-Halley J, Ross RK, Wang Y et al (2007) Long-term recreational physical activity and risk of invasive and in situ breast cancer: the California teachers study. Arch Intern Med 167:408–415. doi:10.1001/archinte.167.4.408

    Article  PubMed  Google Scholar 

  76. Peters TM, Schatzkin A, Gierach GL, Moore SC et al (2009) Physical activity and postmenopausal breast cancer risk in the NIH-AARP diet and health study. Cancer Epidemiol Biomarkers Prev 18:289–296. doi:10.1158/1055-9965.EPI-08-0768

    Article  CAS  PubMed  Google Scholar 

  77. Adams SA, Matthews CE, Hebert JR, Moore CG et al (2006) Association of physical activity with hormone receptor status: the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 15:1170–1178. doi:10.1158/1055-9965.EPI-05-0993

    Article  CAS  PubMed  Google Scholar 

  78. Bardia A, Hartmann LC, Vachon CM, Vierkant RA et al (2006) Recreational physical activity and risk of postmenopausal breast cancer based on hormone receptor status. Arch Intern Med 166:2478–2483. doi:10.1001/archinte.166.22.2478

    Article  PubMed  Google Scholar 

  79. Berclaz G, Li S, Price KN, Coates AS et al (2004) Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol 15:875–884

    Article  CAS  PubMed  Google Scholar 

  80. Dignam JJ, Wieand K, Johnson KA, Raich P, Anderson SJ, Somkin C, Wickerham DL (2006) Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer. Breast Cancer Res Treat 97:245–254. doi:10.1007/s10549-005-9118-3

    Article  PubMed  Google Scholar 

  81. Olsen A, Tjonneland A, Thomsen BL, Loft S et al (2003) Fruits and vegetables intake differentially affects estrogen receptor negative and positive breast cancer incidence rates. J Nutr 133:2342–2347

    CAS  PubMed  Google Scholar 

  82. Enger SM, Ross RK, Paganini-Hill A, Carpenter CL, Bernstein L (2000) Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies. Cancer Epidemiol Biomarkers Prev 9:681–687

    CAS  PubMed  Google Scholar 

  83. Lu C, Speers C, Zhang Y, Xu X et al (2003) Effect of epidermal growth factor receptor inhibitor on development of estrogen receptor-negative mammary tumors. J Natl Cancer Inst 95:1825–1833

    CAS  PubMed  Google Scholar 

  84. Wu K, Zhang Y, Xu XC, Hill J et al (2002) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62:6376–6380

    CAS  PubMed  Google Scholar 

  85. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76. doi:10.1186/gb-2007-8-5-r76

    Article  PubMed  CAS  Google Scholar 

  86. Bachelier R, Xu X, Li C, Qiao W, Furth PA, Lubet RA, Deng CX (2005) Effect of bilateral oophorectomy on mammary tumor formation in BRCA1 mutant mice. Oncol Rep 14:1117–1120

    PubMed  Google Scholar 

  87. Jones LP, Li M, Halama ED, Ma Y et al (2005) Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 24:3554–3562. doi:10.1038/sj.onc.1208426

    Article  CAS  PubMed  Google Scholar 

  88. Farmer H, McCabe N, Lord CJ, Tutt AN et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. doi:10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  89. Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10:R75. doi:10.1186/bcr2142

    Article  PubMed  CAS  Google Scholar 

  90. Green JE, Shibata MA, Shibata E, Moon RC, Anver MR, Kelloff G, Lubet R (2001) 2-Difluoromethylornithine and dehydroepiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(1)/SV40 T/t-antigen transgenic mice. Cancer Res 61:7449–7455

    CAS  PubMed  Google Scholar 

  91. Wu K, Kim HT, Rodriquez JL, Hilsenbeck SG et al (2002) Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 11:467–474

    CAS  PubMed  Google Scholar 

  92. Carey LA, Dees EC, Sawyer L, Gatti L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334. doi:10.1158/1078-0432.CCR-06-1109

    Article  CAS  PubMed  Google Scholar 

  93. Fong PC, Boss DS, Yap TA, Tutt A et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134. doi:10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  94. Natrajan R, Weigelt B, Mackay A, Geyer FC et al (2009) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0501-3

  95. Kagawa-Singer M, Dadia AV, Yu MC, Surbone A (2010) Cancer, culture, and health disparities: time to chart a new course? CA Cancer J Clin 60:12–39. doi:10.3322/caac.20051

    Article  PubMed  Google Scholar 

  96. Olopade OI, Fackenthal JD, Dunston G, Tainsky MA, Collins F, Whitfield-Broome C (2003) Breast cancer genetics in African Americans. Cancer 97:236–245. doi:10.1002/cncr.11019

    Article  CAS  PubMed  Google Scholar 

  97. Nanda R, Schumm LP, Cummings S, Fackenthal JD et al (2005) Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294:1925–1933. doi:10.1001/jama.294.15.1925

    Article  CAS  PubMed  Google Scholar 

  98. Caulfield T, Fullerton SM, Ali-Khan SE, Arbour L et al (2009) Race and ancestry in biomedical research: exploring the challenges. Genome Med 1:8. doi:10.1186/gm8

    Article  PubMed  Google Scholar 

  99. Giri VN, Egleston B, Ruth K, Uzzo RG et al (2009) Race, genetic West African ancestry, and prostate cancer prediction by prostate-specific antigen in prospectively screened high-risk men. Cancer Prev Res (Phila Pa) 2:244–250. doi:10.1158/1940-6207.CAPR-08-0150

    CAS  Google Scholar 

  100. Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann NY Acad Sci 983:197–207

    Article  CAS  PubMed  Google Scholar 

  101. Ross SA, Dwyer J, Umar A, Kagan J, Verma M, Van Bemmel DM, Dunn BK (2008) Introduction: diet, epigenetic events and cancer prevention. Nutr Rev 66(Suppl 1):S1–S6. doi:10.1111/j.1753-4887.2008.00055.x

    Article  PubMed  Google Scholar 

  102. Levin BE (2008) Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity (Silver Spring) 16(Suppl 3):S51–S54. doi:10.1038/oby.2008.518

    Article  Google Scholar 

  103. Lee MP, Dunn BK (2008) Influence of genetic inheritance on global epigenetic states and cancer risk prediction with DNA methylation signature: challenges in technology and data analysis. Nutr Rev 66(Suppl 1):S69–S72. doi:10.1111/j.1753-4887.2008.00072.x

    Article  PubMed  Google Scholar 

  104. AHRQ (2008) 2007 National Healthcare Disparities Reports 2007. Rockville, MD: US Department of Health and Human Services, Agency for Healthcare Research and Quality. Report No.: AHRQ Pub. No. 08-0041

  105. Anonymous (2009) The right target: how survival is affected by race/ethnicity, socioeconomic status. HemOnc Today 10:1

    Google Scholar 

  106. Goss E, Lopez AM, Brown CL, Wollins DS, Brawley OW, Raghavan D (2009) American society of clinical oncology policy statement: disparities in cancer care. J Clin Oncol 27:2881–2885. doi:10.1200/JCO.2008.21.1680

    Article  PubMed  Google Scholar 

  107. IOM (2003) Unequal treatment: confronting racial and ethnic disparities in healthcare. In: Smedley BD, Stith AY, Nelson AR (eds) Institute of Medicine, Washington, DC

  108. Dawood S, Broglio K, Kau SW, Green MC et al (2009) Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol 27:220–226. doi:10.1200/JCO.2008.17.9952

    Article  CAS  PubMed  Google Scholar 

  109. Albain KS, Unger JM, Crowley JJ, Coltman CA Jr, Hershman DL (2009) Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst 101:984–992. doi:10.1093/jnci/djp175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara K. Dunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, B.K., Agurs-Collins, T., Browne, D. et al. Health disparities in breast cancer: biology meets socioeconomic status. Breast Cancer Res Treat 121, 281–292 (2010). https://doi.org/10.1007/s10549-010-0827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0827-x

Keywords

Navigation