Skip to main content

Advertisement

Log in

Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Psoriasin (S100A7), a member of the S100 gene family, is highly expressed in high-grade comedo ductal carcinoma in situ (DCIS), with a higher risk of local recurrence. Psoriasin is, therefore, a potential biomarker for DCIS with a poor prognosis. High-grade DCIS is characterized by a high proliferation rate and crowded cells, consequently, lose contact with the extracellular matrix. The aim of this study was, therefore, to elucidate the involvement of adhesion signals in the regulation of psoriasin. Protein expression was evaluated by Western blotting, flow cytometry, and immunohistochemistry, and using breast carcinoma SAGE databases available from the CGAP website. Intercellular adhesion molecule 1 (ICAM-1) was down-regulated in MCF10A cells using short hairpin RNA. We found a significant negative correlation between the expression of ICAM-1 and psoriasin, and a positive correlation between psoriasin and MUC1 in normal and DCIS SAGE libraries. In a cluster analysis of 34 adhesion molecules and 20 S100 proteins, we showed that SAGE libraries expressing the S100 proteins—psoriasin, calgranulin-A, and calgranulin-B—clustered together. Interestingly, the expression of all the three proteins correlated strongly to the oncogenic MUC1. We confirmed the negative correlation between ICAM-1 and psoriasin/MUC1, when normal and breast cancer cells were cultured in suspension and on collagen, respectively. The down-regulation of ICAM-1 by short hairpin RNA in MCF10A cells led to the induction of psoriasin, calgranulin-A, calgranulin-B, and MUC1, and we demonstrated that these up-regulations were not ROS dependent. By blocking the phospholipase C (PLC)-IP3 pathway in these cells, we showed that the induction of psoriasin diminished. The results suggest that psoriasin is an intracellular calcium-dependent target of the PLC pathway. Our findings suggest that the down-regulation of ICAM-1 in mammary epithelial cells may contribute both to the high expression of psoriasin seen in some high-grade DCIS tumors and to the induction of MUC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24:2137–2150

    Article  PubMed  Google Scholar 

  2. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117:3155–3163

    Article  CAS  PubMed  Google Scholar 

  3. Martinsson H, Yhr M, Enerback C (2005) Expression patterns of S100A7 (psoriasin) and S100A9 (calgranulin-B) in keratinocyte differentiation. Exp Dermatol 14:161–168

    Article  CAS  PubMed  Google Scholar 

  4. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214

    Article  CAS  PubMed  Google Scholar 

  5. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    Article  CAS  PubMed  Google Scholar 

  6. Leygue E, Snell L, Hiller T, Dotzlaw H, Hole K, Murphy LC, Watson PH (1996) Differential expression of psoriasin messenger RNA between in situ and invasive human breast carcinoma. Cancer Res 56:4606–4609

    CAS  PubMed  Google Scholar 

  7. Emberley ED, Alowami S, Snell L, Murphy LC, Watson PH (2004) S100A7 (psoriasin) expression is associated with aggressive features and alteration of Jab1 in ductal carcinoma in situ of the breast. Breast Cancer Res 6:R308–R315

    Article  CAS  PubMed  Google Scholar 

  8. Enerback C, Porter DA, Seth P, Sgroi D, Gaudet J, Weremowicz S, Morton CC, Schnitt S, Pitts RL, Stampl J, Barnhart K, Polyak K (2002) Psoriasin expression in mammary epithelial cells in vitro and in vivo. Cancer Res 62:43–47

    CAS  PubMed  Google Scholar 

  9. Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y, Hiller-Hitchcock T, Hole K, Murphy LC, Watson PH (1999) Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 155:2057–2066

    CAS  PubMed  Google Scholar 

  10. Carlsson H, Yhr M, Petersson S, Collins N, Polyak K, Enerback C (2005) Psoriasin (S100A7) and calgranulin-B (S100A9) induction is dependent on reactive oxygen species and is downregulated by Bcl-2 and antioxidants. Cancer Biol Ther 4:998–1005

    Article  CAS  PubMed  Google Scholar 

  11. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, Gibson SB, Murphy LC, Watson PH (2005) The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res 65:5696–5702

    Article  CAS  PubMed  Google Scholar 

  12. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, Watson PH (2003) Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res 63:1954–1961

    CAS  PubMed  Google Scholar 

  13. Krop I, Marz A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M, Gelman R, Sabel MS, Schnitt S, Ramaswamy S, Kleer CG, Enerback C, Polyak K (2005) A putative role for psoriasin in breast tumor progression. Cancer Res 65:11326–11334

    Article  CAS  PubMed  Google Scholar 

  14. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    Article  PubMed  Google Scholar 

  15. Petersson S, Bylander A, Yhr M, Enerback C (2007) S100A7 (Psoriasin), highly expressed in ductal carcinoma in situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells. BMC cancer 7:205

    Article  PubMed  Google Scholar 

  16. Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De Souza SJ, Riggins GJ (2002) An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA 99:11287–11292

    Article  CAS  PubMed  Google Scholar 

  17. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K (2001) A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res 61:5697–5702

    CAS  PubMed  Google Scholar 

  18. Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, Schnitt S, Gabrielson E, Gelman R, Polyak K (2003) Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 1:362–375

    CAS  PubMed  Google Scholar 

  19. Wadsworth TL, Bishop JA, Pappu AS, Woltjer RL, Quinn JF (2008) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimers Dis 14:225–234

    CAS  PubMed  Google Scholar 

  20. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920

    PubMed  Google Scholar 

  21. Rahn JJ, Shen Q, Mah BK, Hugh JC (2004) MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem 279:29386–29390

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Baichwal V, Cao Z (1994) Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci USA 91:11641–11645

    Article  CAS  PubMed  Google Scholar 

  23. Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 28:3086–3099

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi T, Takahashi T, Motoya S, Ishida T, Itoh F, Adachi M, Hinoda Y, Imai K (2001) MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion 63 Suppl 1:87–92

    Article  CAS  PubMed  Google Scholar 

  25. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  CAS  PubMed  Google Scholar 

  26. Rahn JJ, Dabbagh L, Pasdar M, Hugh JC (2001) The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 91:1973–1982

    Article  CAS  PubMed  Google Scholar 

  27. Yin L, Li Y, Ren J, Kuwahara H, Kufe D (2003) Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 278:35458–35464

    Article  CAS  PubMed  Google Scholar 

  28. Thompson EJ, Shanmugam K, Hattrup CL, Kotlarczyk KL, Gutierrez A, Bradley JM, Mukherjee P, Gendler SJ (2006) Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-kappaB pathways. Mol Cancer Res 4:489–497

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Z, Wong S, Borrelli A, Chung MA (2007) Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem Biophys Res Commun 362:740–746

    Article  CAS  PubMed  Google Scholar 

  30. Zhou G, Xie TX, Zhao M, Jasser SA, Younes MN, Sano D, Lin J, Kupferman ME, Santillan AA, Patel V, Gutkind JS, Ei-Naggar AK, Emberley ED, Watson PH, Matsuzawa SI, Reed JC, Myers JN (2008) Reciprocal negative regulation between S100A7/psoriasin and beta-catenin signaling plays an important role in tumor progression of squamous cell carcinoma of oral cavity. Oncogene 27:3527–3538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Kornelia Polyak at DFCI, Boston, MA, for his generous help and valuable suggestions. We thank Katarina Junevik (Sahlgrenska University Hospital, Gothenburg) for her help with flow cytometry analysis. We thank Maria Nethander at the Genomics Core Facility (Gothenburg) for her help with hierarchical clustering analysis. This study was supported by grants from the Swedish Cancer Society, the Swedish Psoriasis Association, the Assar Gabrielsson Foundation, the Welander Foundation, and the Tore Nilsson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Petersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersson, S., Shubbar, E., Yhr, M. et al. Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells. Breast Cancer Res Treat 125, 13–25 (2011). https://doi.org/10.1007/s10549-010-0820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0820-4

Keywords

Navigation