Skip to main content

Advertisement

Log in

Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX), despite causing cardiac toxicity, is an anthracycline chemotherapeutic agent that plays an important role in the treatment of breast cancer. Angiotensin-converting enzyme inhibitors (ACE-I) may protect against cardiac toxicity in patients receiving DOX chemotherapy. A total of 143 patients receiving DOX at the Masonic Comprehensive Cancer Clinic, University of Minnesota, who had two or more multigated blood pool imaging (MUGA) scans or echocardiograms performed between 2004 and 2007 were identified and reviewed. Patients with a 10% absolute drop in their ejection fraction (EF) or more to below 55% were identified and compared with those that did not have a 10% decline in EF. Impact of patient variables and the use of concurrent medications on EF drop were evaluated using logistic regression. Median age was 52 years old. 85 (60%) were female. Cancer diagnosis was breast (n = 26), lymphoma (n = 92), and other (n = 25). In spite of a similar baseline EF in all the patients, 22/142 (15%) patients had a significant drop in EF during DOX chemotherapy. Adjusting for age, the odds ratio of EF drop associated with the use of ACE-I is 0.267 (P = 0.0940), suggesting that ACE-I has a protective effect. Cumulative DOX dose, the use of beta-blockers, or aspirin did not appear to be predictive or protective. Although not statistically significant, this study suggests that the use of ACE-I when given with DOX chemotherapy protects against DOX chemotherapy and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lopez M, Vici P, Di Lauro K et al (1998) Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol 16:86–92

    CAS  PubMed  Google Scholar 

  2. Moore S (2001) Drug-induced congestive heart failure in breast cancer survivors. Clin Excell Nurse Pract 5:129–133

    Article  CAS  PubMed  Google Scholar 

  3. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  4. Machida U, Kami M, Hirai H (1998) Treatment of intermediate-grade and high-grade non-hodgkin’s lymphoma. N Engl J Med 339:1476

    Google Scholar 

  5. Coiffier B, Lepage E, Briere J et al (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:235–242

    Article  CAS  PubMed  Google Scholar 

  6. Akhtar S, Maghfoor I (2002) Rituximab plus CHOP for diffuse large-B-cell lymphoma. N Engl J Med 346:1830–1831

    Article  PubMed  Google Scholar 

  7. Swain SM (1999) Doxorubicin-induced cardiomyopathy. N Engl J Med 340:654

    CAS  PubMed  Google Scholar 

  8. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  CAS  PubMed  Google Scholar 

  9. Lefrak EA, Pitha J, Rosenheim S et al (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32(3):302–314

    Article  CAS  PubMed  Google Scholar 

  10. Hayek ER, Speakman E, Rehmus E (2005) Acute doxorubicin cardiotoxicity. N Engl J Med 352:2456–2457

    Article  CAS  PubMed  Google Scholar 

  11. McKillop J, Bristow M, Goris M et al (1983) Sensitivity and specificity of radionuclide ejection fractions in doxorubicin cardiotoxicity. Am Heart J 106:1048–1056

    Article  CAS  PubMed  Google Scholar 

  12. Ritchie J, Singer J, Thorning D (1980) Anthracycline cardiotoxicity: clinical and pathologic outcomes assessed by radionuclide ejection fraction. Cancer 46:1109–1116

    Article  CAS  PubMed  Google Scholar 

  13. Paulides M, Kremers A, Stohr W et al (2006) Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the late effects surveillance system (LESS). Pediatr Blood Cancer 46(4):489–495

    Article  CAS  PubMed  Google Scholar 

  14. Bleyer WA (1990) The impact of childhood cancer on the United States and the world. CA Cancer J Clin 40:355–367

    Article  CAS  PubMed  Google Scholar 

  15. Hershman DL, McBride RB, Eisenberger A et al (2008) Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol 26(19):3159–3165

    Article  CAS  PubMed  Google Scholar 

  16. Coccaro M, Gallucci G (2008) Late cardiac effects of adjuvant radiotherapy and chemotherapy in early breast cancer. J Clin Oncol 26(19):3288

    Article  PubMed  Google Scholar 

  17. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Article  Google Scholar 

  18. Boucek RJ Jr, Steele A, Miracle A et al (2003) Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 3:319–329

    Article  CAS  PubMed  Google Scholar 

  19. Cardinale D, Colombo A, Sandri MT et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481

    Article  CAS  PubMed  Google Scholar 

  20. Granger CB (2006) Prediction and prevention of chemotherapy-induced cardiomyopathy: can it be done? Circulation 114:2432–2433

    Article  PubMed  Google Scholar 

  21. Hatake K, Miura Y (1996) Angiotensin-converting enzyme inhibitor for epirubicin-induced dilated cardiomyopathy. Lancet 347:1485

    Article  CAS  PubMed  Google Scholar 

  22. Iqbal M, Dubey K, Anwer T (2008) Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Rep 60(3):382–390

    CAS  PubMed  Google Scholar 

  23. Dunn FG, Oigman W, Ventura HO et al (1984) Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 53:105–108

    Article  CAS  PubMed  Google Scholar 

  24. Wang LX, Ideishi M, Yahiro E et al (2001) Mechanism of the cardioprotective effect of inhibition of the renin-angiotensin system on ischemia/reperfusion-induced myocardial injury. Hypertens Res 24:179–187

    Article  CAS  PubMed  Google Scholar 

  25. Ibrahim MA, Ashour OM, Ibrahim YF et al (2009) Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacol Res 60:373–381

    Article  CAS  PubMed  Google Scholar 

  26. Sacco G, Bigioni M, Evangelista S, Goso C, Manzini S, Maggi CA (2001) Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol 414:71–78

    Article  CAS  PubMed  Google Scholar 

  27. Iqbal M, Dubey K, Anwer T, Ashish A, Pillai K (2008) Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Res 60:382–390

    CAS  Google Scholar 

  28. Toko H, Oka T, Zou Y, Sakamoto M et al (2002) Angiotensin II type Ia receptor mediates doxorubicin-induced cardiomyopathy. Hypertens Res 25:597–603

    Article  CAS  PubMed  Google Scholar 

  29. Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–1221

    Article  CAS  PubMed  Google Scholar 

  30. Swain S, Whaley F, Gerber M et al (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1332

    Google Scholar 

  31. Seymour L, Bramwell V, Moran LA (1999) Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. Cancer Prev Control 3(2):145–159

    CAS  PubMed  Google Scholar 

  32. Nakamae H, Tsumura K, Terada Y et al (2005) Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 104:2492–2498

    Article  CAS  PubMed  Google Scholar 

  33. Jensen BV, Skovsgaard T, Nielsen SL (2002) Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 13(5):699–709

    Article  CAS  PubMed  Google Scholar 

  34. Kalay N, Basar E, Ozdogru I et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48(11):2258–2262

    Article  CAS  PubMed  Google Scholar 

  35. Sardão VA, Oliveira PJ, Holy J et al (2009) Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol 64(4):811–827

    Article  PubMed  Google Scholar 

  36. Fazio S, Palmieri EA, Ferravante B et al (1998) Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin Cardiol 21(10):777–779

    Article  CAS  PubMed  Google Scholar 

  37. Tallaj JA, Franco V, Rayburn BK et al (2005) Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant 24(12):2196–2201

    Article  PubMed  Google Scholar 

  38. Naidu MU, Kumar KV, Mohan IK et al (2002) Protective effect of Gingko biloba extract against doxorubicin-induced cardiotoxicity in mice. Indian J Exp Biol 40(8):894–900

    CAS  PubMed  Google Scholar 

  39. Sung RY, Huang GY, Shing MK et al (1997) Echocardiographic evaluation of cardiac function in paediatric oncology patients treated with or without anthracycline. Int J Cardiol 60(3):239–248

    Article  CAS  PubMed  Google Scholar 

  40. Steinherz LJ, Steinherz PG, Tan CT et al (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266(12):1672–1677

    Article  CAS  PubMed  Google Scholar 

  41. Citron ML, Berry DA, Cirrincione C et al (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21(8):1431–1439

    Article  CAS  PubMed  Google Scholar 

  42. Meinardi MT, van Veldhuisen DJ, Gietema JA et al (2001) Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 19(10):2746–2753

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was supported by NRSA T32-HL07062-31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne H. Blaes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaes, A.H., Gaillard, P., Peterson, B.A. et al. Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy. Breast Cancer Res Treat 122, 585–590 (2010). https://doi.org/10.1007/s10549-009-0730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0730-5

Keywords

Navigation