Skip to main content

Advertisement

Log in

Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Multiple coactivator and corepressor complexes play an important role in endocrine processes and breast cancer; in particular, estrogen and estrogen receptor-α (ERα) promote the proliferation of breast cancer cells. Menin is a tumor suppressor encoded by Men1 that is mutated in the human-inherited tumor syndrome multiple endocrine neoplasia type 1 (MEN1); it also serves as a critical link in the recruitment of nuclear receptor-mediated transcription. Here, we show that menin expressed in breast cancer cell line MCF-7 is colocalized with ERα and functions as a direct coactivator of ER-mediated transcription in breast cancer cells. In MCF-7 cells, coexpression of menin and estrogen-response element-luciferase induced the activity of the latter in a hormone-dependent manner. Cells knocked down for ERα exhibited impaired ERE-luciferase activity induced by menin. Mammalian two-hybrid assay and GST pull-down assays indicated that menin could interact with the AF-2 domain of ERα. These results indicate that menin is a direct activator of ERα function. Tamoxifen inhibited the binding of menin to AF-2 in mammalian two-hybrid assay, but in menin-overexpressing clones, tamoxifen suppressed ERE-luciferase activity only to the levels of nontreated wild-type MCF-7. In a clinical study with 65 ER-positive breast cancer samples—all of which had been treated with tamoxifen for 2–5 years as adjuvant therapies—menin-positive tumors had a worse outcome than menin-negative ones. These indicated that menin can function as a transcriptional regulator of ERα and is a possible predictive factor for tamoxifen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciocca DR, Fanelli MA (1997) Estrogen receptors and cell proliferation in breast cancer. Trends Endocrinol Metab 8:313–821

    Article  CAS  PubMed  Google Scholar 

  2. Govind AP, Thampan RV (2001) Proteins interacting with the mammalian estrogen receptor: proposal for an integrated model for estrogen receptor mediated regulation of transcription. J Cell Biochem 80:571–579

    Article  CAS  PubMed  Google Scholar 

  3. Fishman J, Osborne MP, Telang NT (1995) The role of estrogen in mammary carcinogenesis. Ann NY Acad Sci 768:91–100

    Article  CAS  PubMed  Google Scholar 

  4. Davidson NE (2000) Combined endocrine therapy for breast cancer—new life for an old idea? J Natl Cancer Inst 92:859–860

    Article  CAS  PubMed  Google Scholar 

  5. Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339:974–984

    Article  CAS  PubMed  Google Scholar 

  6. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    Article  CAS  PubMed  Google Scholar 

  7. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  8. Heinzel T, Lavinsky RM, Mullen TM, Söderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48

    Article  CAS  PubMed  Google Scholar 

  9. McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 2:321–344

    Google Scholar 

  10. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    Article  CAS  PubMed  Google Scholar 

  11. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580

    Article  CAS  PubMed  Google Scholar 

  12. McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME (1999) P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci USA 96:5383–5387

    Article  Google Scholar 

  13. Lemmens I, Van de Ven WJ, Kas K, Zhang CX, Giraud S, Wautot V, Buisson N, De Witte K, Salandre J, Lenoir G, Pugeat M, Calender A, Parente F, Quincey D, Gaudray P, De Wit MJ, Lips CJ, Höppener JW, Khodaei S, Grant AL, Weber G, Kytölä S, Teh BT, Farnebo F, Phelan C, Hayward N, Larsson N, Pannett AAJ, Forbes SA, Bassett JHD, Thakker RV (1997) Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. Hum Mol Genet 6:1177–1183

    Article  CAS  PubMed  Google Scholar 

  14. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, Marx SJ (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404–407

    Article  CAS  PubMed  Google Scholar 

  15. Sheppherd JJ (1991) The natural history of multiple endocrine neoplasia type 1. Highly uncommon or highly unrecognized? Arch Surg 126:935–952

    Article  Google Scholar 

  16. Trump D, Farren B, Wooding C, Pang JT, Besser GM, Buchanan KD, Edwards CR, Heath DA, Jackson CE, Jansen S, Lips K, Monson JP, O’Halloran D, Sampson J, Shalet SM, Wheeler MH, Zink A, Thakker RV (1996) Clinical studies of multiple endocrine neoplasia type 1 (MEN1). Q J Med 89:653–659

    Article  CAS  Google Scholar 

  17. Poisson A, Zablewska B, Gaudray P (2003) Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1. Cancer Lett 189:1–10

    Article  CAS  PubMed  Google Scholar 

  18. Chandrasekharappa SC, Teh BT (2003) Functional studies of the MEN1 gene. J Intern Med 253:606–615

    Article  CAS  PubMed  Google Scholar 

  19. Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, Rice TS, Moore JB, Rao S, Ji Y, Mateo C, Libutti SK, Oliver B, Chandrasekharappa SC, Burns AL, Collins FS, Spiegel AM, Marx SJ (2005) Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 37:369–374

    Article  CAS  PubMed  Google Scholar 

  20. Sayo Y, Murao K, Imachi H, Cao WM, Sato M, Dobashi H, Wong NC, Ishida T (2002) The multiple endocrine neoplasia type 1 gene product, menin, inhibits insulin production in rat insulinoma cells. Endocrinology 143:2437–2440

    Article  CAS  PubMed  Google Scholar 

  21. Schnepp RW, Mao H, Sykes SM, Zong WX, Silva A, La P, Hua X (2004) Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem 279:10685–10691

    Article  CAS  PubMed  Google Scholar 

  22. Busygina V, Suphapeetiporn K, Marek LR, Stowers RS, Xu T, Bale AE (2004) Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 13:2399–2408

    Article  CAS  PubMed  Google Scholar 

  23. Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D’Andrea AD, Hua X (2003) Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 63:4204–4210

    CAS  PubMed  Google Scholar 

  24. Scappaticci S, Maraschio P, del Ciotto N, Fossati GS, Zonta A, Fraccaro M (1991) Chromosome abnormalities in lymphocytes and fibroblasts of subjects with multiple endocrine neoplasia type 1. Cancer Genet Cytogenet 52:85–92

    Article  CAS  PubMed  Google Scholar 

  25. Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ, Burns AL (1999) Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96:143–152

    Article  CAS  PubMed  Google Scholar 

  26. Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ, Burns AL (2001) The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 20:4917–4925

    Article  CAS  PubMed  Google Scholar 

  27. Lin S, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881–889

    Article  CAS  PubMed  Google Scholar 

  28. Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, Kay GF, Hayward NK, Hess JL, Meyerson M (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597

    Article  CAS  PubMed  Google Scholar 

  29. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24:5639–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhuiyan MM, Sato M, Murao K, Imachi H, Namihira H, Takahara J (2000) Expression of menin in parathyroid tumors. J Clin Endocrinol Metab 85:2615–2619

    Article  CAS  PubMed  Google Scholar 

  31. Bhuiyan MM, Sato M, Murao K, Imachi H, Namihira H, Ishida T, Takahara J, Miyauchi A (2001) Differential expression of menin in various adrenal tumors. The role of menin in adrenal tumors. Cancer 92:1393–1401

    Article  CAS  PubMed  Google Scholar 

  32. Saji S, Okumura N, Eguchi H, Nakashima S, Suzuki A, Toi M, Nozawa Y, Saji S, Hayashi S (2001) MDM2 enhances the function of estrogen receptor alpha in human breast cancer cells. Biochem Biophys Res Commun 281:259–265

    Article  CAS  PubMed  Google Scholar 

  33. Sakamoto T, Eguchi H, Omoto Y, Ayabe T, Mori H, Hayashi S (2002) Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol Cell Endocrinol 192:93–104

    Article  CAS  PubMed  Google Scholar 

  34. Murao K, Wada Y, Nakamura T, Taylor AH, Mooradian AD, Wong NC (1998) Effects of glucose and insulin on rat apolipoprotein A-I gene expression. J Biol Chem 273:18959–18965

    Article  CAS  PubMed  Google Scholar 

  35. Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O (1997) Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem 272:17551–17557

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi S, Hajiro-Nakanishi K, Makino Y, Eguchi H, Yodoi J, Tanaka H (1997) Functional modulation of estrogen receptor by redox state with reference to thioredoxin as a mediator. Nucleic Acids Res 25:4035–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murao K, Bassyouni H, Taylor AH, Wanke IE, Wong NC (1997) Hepatocyte nuclear factor 4 inhibits activity of site A from the rat apolipoprotein A1 gene. Biochemistry 36:301–306

    Article  CAS  PubMed  Google Scholar 

  38. Namihira H, Sato M, Murao K, Cao WM, Matsubara S, Imachi H, Niimi M, Dobashi H, Wong NC, Ishida T (2002) The multiple endocrine neoplasia type 1 gene product, menin, inhibits the human prolactin promoter activity. J Mol Endocrinol 29:297–304

    Article  CAS  PubMed  Google Scholar 

  39. Dreijerink KM, Mulder KW, Winkler GS, Höppener JW, Lips CJ, Timmers HT (2006) Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res 66:4929–4935

    Article  CAS  PubMed  Google Scholar 

  40. Sato M, Matsubara S, Miyauchi A, Ohye H, Imachi H, Murao K, Takahara J (1998) Identification of five novel germline mutations of the MEN1 gene in Japanese multiple endocrine neoplasia type 1 (MEN1) families. J Med Genet 35:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berry M, Metzger D, Chambon P (1990) Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9:2811–2818

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shupnik MA, Pitt LK, Soh AY, Anderson A, Lopes MB, Laws ER Jr (1998) Selective expression of estrogen receptor alpha and beta isoforms in human pituitary tumors. J Clin Endocrinol Metab 83:3965–3972

    CAS  PubMed  Google Scholar 

  43. Glass CK, Rose DW, Rosenfeld MG (1997) Nuclear receptor coactivators. Curr Opin Cell Biol 9:222–232

    Article  CAS  PubMed  Google Scholar 

  44. McInerney EM, Tsai MJ, O’Malley BW, Katzenellenbogen BS (1996) Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad Sci USA 93:10069–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968

    Article  CAS  PubMed  Google Scholar 

  46. Katzenellenbogen BS, Katzenellenbogen JA (2002) Biomedicine. Defining the “S” in SERMs. Science 295:2380–2381

    Article  CAS  PubMed  Google Scholar 

  47. Katzenellenbogen JA, O’Malley BW, Katzenellenbogen BS (1996) Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell- and promoter-specific action of these hormones. Mol Endocrinol 10:119–131

    CAS  PubMed  Google Scholar 

  48. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Métivier R, Stark A, Flouriot G, Hübner MR, Brand H, Penot G, Manu D, Denger S, Reid G, Kos M, Russell RB, Kah O, Pakdel F, Gannon F (2002) A dynamic structural model for estrogen receptor-alpha activation by ligands, emphasizing the role of interactions between distant A and E domains. Mol Cell 10:1019–1032

    Article  PubMed  Google Scholar 

  50. Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    CAS  PubMed  Google Scholar 

  51. Norris JD, Fan D, Sherk A, McDonnell DP (2002) A negative coregulator for the human ER. Mol Endocrinol 16:459–468

    Article  CAS  PubMed  Google Scholar 

  52. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11:693–705

    Article  CAS  PubMed  Google Scholar 

  53. Fox EM, Davis RJ, Shupnik MA (2008) ERbeta in breast cancer—onlooker, passive player, or active protector? Steroids 73:1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, Jiang J, Howat WJ, Ali S, Carroll J (2008) Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249

    Article  CAS  PubMed  Google Scholar 

  56. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  57. Itoh Y (2006) MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life 58:589–596

    Article  CAS  PubMed  Google Scholar 

  58. Kousidou OCh, Berdiaki A, Kletsas D, Zafiropoulos A, Theocharis AD, Tzanakakis GN, Karamanos NK (2008) Estradiol-estrogen receptor: a key interplay of the expression of syndecan-2 and metalloproteinase-9 in breast cancer cells. Mol Oncol 2:223–232

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Murao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imachi, H., Murao, K., Dobashi, H. et al. Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res Treat 122, 395–407 (2010). https://doi.org/10.1007/s10549-009-0581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0581-0

Keywords

Navigation