Skip to main content

Advertisement

Log in

Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Obtaining negative margins is critical for breast cancer patients undergoing conservation therapy in order to reduce the reemergence of the original cancer. Currently, breast cancer tumor margins are examined in a pathology lab either while the patient is anesthetized or after the surgical procedure has been terminated. These current methods often result in cancer cells present at the surgical resection margin due to inadequate margin assessment at the point of care. Due to such limitations evident in current diagnoses, tools for increasing the accuracy and speed of tumor margin detection directly in the operating room are still needed. We are exploring the potential of using a nano-biophotonics system to facilitate intraoperative tumor margin assessment ex vivo at the cellular level. By combining bioconjugated silica-based gold nanoshells, which scatter light in the near-infrared, with a portable FDA-approved reflectance confocal microscope, we first validate the use of gold nanoshells as effective reflectance-based imaging probes by evaluating the contrast enhancement of three different HER2-overexpressing cell lines. Additionally, we demonstrate the ability to detect HER2-overexpressing cells in human tissue sections within 5 min of incubation time. This work supports the use of targeted silica-based gold nanoshells as potential real-time molecular probes for HER2-overexpression in human tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balch GC, Mithani SK, Simpson JF, Kelley MC (2005) Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy. Am Surg 71(1):22–27

    PubMed  Google Scholar 

  2. Gibson GR, Lesnikoski BA, Yoo J, Mott LA, Cady B, Barth RJ (2001) A comparison of ink-directed and traditional whole-cavity re-excision for breast lumpectomy specimens with positive margins. Ann Surg Oncol 8(9):693–704. doi:10.1007/s10434-001-0693-1

    Article  CAS  PubMed  Google Scholar 

  3. Cabioglu N, Hunt KK, Singletary SE, Stephens TW, Marcy S, Meric F, Ross MI, Babiera GV, Ames FC, Kuerer HM (2003) Surgical decision making and factors determining a diagnosis of breast carcinoma in women presenting with nipple discharge. J Am Coll Surg 197(4):697–698. doi:10.1016/S1072-7515(02)01606-X

    Google Scholar 

  4. Vicini FA, Goldstein NS, Pass H, Kestin LL (2004) Use of pathologic factors to assist in establishing adequacy of excision before radiotherapy in patients treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 60(1):86–94. doi:10.1016/j.ijrob.2004.02.002

    PubMed  Google Scholar 

  5. Smitt MC, Nowels K, Carlson RW, Jeffrey SS (2003) Predictors of re-excision findings and recurrence after breast conservation. Int J Radiat Oncol Biol Phys 57(4):979–985. doi:10.1016/S0360-3016(03)00740-5

    PubMed  Google Scholar 

  6. Abraham SC, Fox K, Fraker D, Solin L, Reynolds C (1999) Sampling of grossly benign re-excisions: a multidisciplinary approach to assessing adequacy. Am J Surg Pathol 23(3):316–322. doi:10.1097/00000478-199903000-00011

    Article  CAS  PubMed  Google Scholar 

  7. Parrish A, Halama E, Tilli MT, Freedman M, Furth PA (2005) Reflectance confocal microscopy for characterization of mammary ductal structures and development of neoplasia in genetically engineered mouse models of breast cancer. J Biomed Opt 10(5):051602. doi:10.1117/1.2065827

    Google Scholar 

  8. Tilli MT, Parrish AR, Cotarla I, Jones LP, Johnson MD, Furth PA (2008) Comparison of mouse mammary gland imaging techniques and applications: reflectance confocal microscopy, GFP imaging, and ultrasound. BMC Cancer 8(21):1–15. doi:10.1186/1471-2407-8-21

    Google Scholar 

  9. Tilli MT, Cabrera MC, Parrish AR, Torre KM, Sidawy MK, Gallagher AL, Makariou E, Polin SA, Liu MC, Furth PA (2007) Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy. J Biomed Opt 12(5):051901. doi:10.1117/1.2799187

    Google Scholar 

  10. Chen CSJ, Elias M, Busam K, Rajadhyaksha M, Marghoob AA (2005) Multimodal in vivo optical imaging, including confocal microscopy, facilitates presurgical margin mappling for clinically complex lentigo maligna melanoma. Br J Dermatol 153(5):1031–1036. doi:10.1111/j.1365-2133.2005.06831.x

    Article  PubMed  Google Scholar 

  11. Clark A, Gillenwater A, Alizadeh-Naderi R, El-Naggar A, Richards-Kortum R (2004) Detection and diagnosis of oral neoplasia with an optical coherence microscope. J Biomed Opt 9(6):1271–1280. doi:10.1117/1.1805558

    Article  CAS  PubMed  Google Scholar 

  12. Zysk AM, Boppart SA (2006) Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J Biomed Opt 11(5):054015. doi:10.1117/1.2358964

    Google Scholar 

  13. Wilder-Smith P, Jung W, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z (2004) In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med 35(4):269–275. doi:10.1002/lsm.20098

    Article  PubMed  Google Scholar 

  14. Cobb M, Chen Y, Bailey S, Kemp C, Li X (2006) Non-invasive imaging of carcinogen-induced early neoplasia using ultrahigh-resolution optical coherence tomography. Cancer Biomark 2(3–4):163–173

    PubMed  Google Scholar 

  15. Zuluaga A, Follen M, Boiko I, Malpica A, Richards-Kortum R (2005) Optical coherence tomography: a pilot study of a new imaging technique for noninvasive examination of cervical tissue. Am J Obstet Gynecol 193(1):83–88. doi:10.1016/j.ajog.2004.11.054

    Article  PubMed  Google Scholar 

  16. Boppart S, Brezinksi M, Pitris C, Fujimoto J (1998) Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery 43(4):834–841. doi:10.1097/00006123-199810000-00068

    Article  CAS  PubMed  Google Scholar 

  17. Boppart SA (2006) Advances in contrast enhancement for optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc 1:121–124. doi:10.1109/IEMBS.2006.259366

    Article  PubMed  Google Scholar 

  18. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004

    CAS  PubMed  Google Scholar 

  19. Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19(6):1309–1313. doi:10.1021/bc8001248

    Article  CAS  PubMed  Google Scholar 

  20. Aaron J, Nitin N, Travis K, Kumar S, Collier T, Park SY, Jose-Yacaman M, Coghlan L, Follen M, Richards-Kortum R (2007) Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 12(3):034007. doi:10.1117/1.2737351

    Google Scholar 

  21. Kah JCY, Olivo MC, Lee CGL, Sheppard CJR (2008) Molecular contrast of EGFR expression using gold nanoparticles as a reflectance-based imaging probe. Mol Cell Probes 22(1):14–23. doi:10.1016/j.mcp.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  22. Nitin N, Javier DJ, Roblyer DM, Richards-Kortum R (2007) Widefield and high-resolution reflectance imaging of gold and silver nanospheres. J Biomed Opt 12(5):051505. doi:10.1117/1.2800314

    Google Scholar 

  23. Javier DJ, Nitin N, Roblyer D, Richards-Kortum R (2008) Metal-based nanorods as molecular-specific contrast agents for reflectance imaging in 3D tissues. J Nanophotonics 2(1):023506. doi:10.1117/1.2927370

    Google Scholar 

  24. Bickford LR, Chang J, Fu K, Sun J, Hu Y, Gobin AM, Yu T-K, Drezek RA (2008) Evaluation of immunotargeted gold nanoshells as rapid diagnostic imaging agents for HER2-overexpressing breast cancer cells: a time-based analysis. NanoBiotechnol. doi:10.1007/s12030-008-9010-4 (online first)

  25. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    CAS  PubMed  Google Scholar 

  26. Loo C, Hirsh L, Lee MH, Change E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014. doi:10.1364/OL.30.001012

    Article  CAS  PubMed  Google Scholar 

  27. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711. doi:10.1021/nl050127s

    Article  CAS  PubMed  Google Scholar 

  28. Fu K, Sun J, Bickford LR, Lin AWH, Halas NJ, Yu TK, Drezek RA (2008) Measurement of immunotargeted plasmonic nanoparticles’ cellular binding: a key factor in optimizing diagnostic efficacy. Nanotechnology 19:045103. doi:10.1088/0957-4484/19/04/045103

    Article  Google Scholar 

  29. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  30. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9(9):2301–2309. doi:10.1021/la00033a010

    Article  CAS  Google Scholar 

  31. Wang J, Yong WH, Sun Y, Vernier PT, Koeffler HP, Gundersen MA, Marcu L (2007) Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J Biomed Opt 12(4):044021. doi:10.1117/1.2764463

    Google Scholar 

Download references

Acknowledgments

We thank the Cooperative Human Tissue Network for providing fresh frozen tissue samples and Wendy Schober at MDACC for performing flow cytometry on all cell lines. This work was supported by a Department of Defense Congressionally Directed Breast Cancer Research Program Era of Hope Scholar Award to Rebekah Drezek and Tse-Kuan Yu, the Center for Biological and Environmental Nanotechnology (EEC-0118007 and EEC-0647452), and the John and Ann Doerr Fund for Computational Biomedicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah Drezek.

Additional information

Rebekah Drezek and Tse-Kuan Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickford, L.R., Agollah, G., Drezek, R. et al. Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy. Breast Cancer Res Treat 120, 547–555 (2010). https://doi.org/10.1007/s10549-009-0408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0408-z

Keywords

Navigation