Skip to main content

Advertisement

Log in

Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 19 September 2009

Abstract

Recent findings indicate a greater risk of postmenopausal breast cancer with estrogen–progestagen therapy than estrogen monotherapy, and more so for current than past use. Few studies have examined individual genetic susceptibility to the effects of menopausal hormone therapy. We used two population-based case-control studies with 3,155 postmenopausal breast cancer patients and 5,496 controls to evaluate modification of breast cancer risk associated with duration of hormone use by genes involved in hormone metabolism and detoxification. Twenty-eight polymorphisms in eight genes of phase I (CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP3A4, CYP3A5, CYP3A7) and nine genes of phase II enzymes (COMT, GSTM1, GSTM3, GSTP1, GSTT1, SULT1A1, UGT1A1, UGT1A6, UGT2B7) were genotyped. The risk associated with duration of use of combined estrogen–progestagen therapy was significantly modified by genetic polymorphisms located in CYP1B1, GSTP1, and GSTT1. In homozygote carriers of the CYP1B1_142_G and the CYP1B1_355 _T variant alleles, adjusted odds ratios (OR) per year of use were 1.06 (95% confidence interval (CI) = 1.02–1.09) and 1.06 (95% CI = 1.03–1.09), respectively, compared with 1.02 (95% CI = 1.01–1.03) in non-carriers of either polymorphism (p interaction = 0.01). Carriers of the functional GSTT1 allele and the GSTP1_341_T allele were at significantly higher risks associated with hormone use compared with non-carriers (p interaction = 0.0001 and 0.02). CYP1A1_2452_C>A significantly reduced the risk associated with duration of use of estrogen monotherapy (p interaction = 0.01). The finding regarding GSTT1 was still statistically significant after corrections for multiple comparisons. Postmenopausal breast cancer risk associated with hormone therapy may be modified by genetically determined variations in phase I and II enzymes involved in steroid hormone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beral V (2003) Breast cancer and hormone-replacement therapy in the million women study. Lancet 362(9382):419–427. doi:10.1016/S0140-6736(03)14596-5

    Article  CAS  PubMed  Google Scholar 

  2. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288(3):321–333. doi:10.1001/jama.288.3.321

    Article  CAS  PubMed  Google Scholar 

  3. Flesch-Janys D, Slanger T, Mutschelknauss E, Kropp S, Obi N, Vettorazzi E, Braendle W, Bastert G, Hentschel S, Berger J, Chang-Claude J (2008) Risk of different histological types of postmenopausal breast cancer by type and regimen of menopausal hormone therapy. Int J Cancer 123(4):933–941. doi:10.1002/ijc.23655

    Article  CAS  PubMed  Google Scholar 

  4. Newcomb PA, Titus-Ernstoff L, Egan KM, Trentham-Dietz A, Baron JA, Storer BE, Willett WC, Stampfer MJ (2002) Postmenopausal estrogen and progestin use in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 11(7):593–600

    CAS  PubMed  Google Scholar 

  5. Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92(4):328–332. doi:10.1093/jnci/92.4.328

    Article  CAS  PubMed  Google Scholar 

  6. Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen–progestin replacement therapy and breast cancer risk. JAMA 283(4):485–491. doi:10.1001/jama.283.4.485

    Article  CAS  PubMed  Google Scholar 

  7. Seeger H, Mueck AO (2008) Are the progestins responsible for breast cancer risk during hormone therapy in the postmenopause? Experimental vs. clinical data. J Steroid Biochem Mol Biol 109(1-2):11–15. doi:10.1016/j.jsbmb.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Zumoff B (1998) Does postmenopausal estrogen administration increase the risk of breast cancer? Contributions of animal, biochemical, and clinical investigative studies to a resolution of the controversy. Proc Soc Exp Biol Med 217(1):30–37

    CAS  PubMed  Google Scholar 

  9. Poutanen M, Isomaa V, Peltoketo H, Vihko R (1995) Role of 17 beta-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis. J Steroid Biochem Mol Biol 55(5–6):525–532. doi:10.1016/0960-0760(95)00201-4

    Article  CAS  PubMed  Google Scholar 

  10. Pawlak KJ, Wiebe JP (2007) Regulation of estrogen receptor (ER) levels in MCF-7 cells by progesterone metabolites. J Steroid Biochem Mol Biol 107(3–5):172–179. doi:10.1016/j.jsbmb.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  11. Wiebe JP (2006) Progesterone metabolites in breast cancer. Endocr Relat Cancer 13(3):717–738. doi:10.1677/erc.1.01010

    Article  CAS  PubMed  Google Scholar 

  12. Wiebe JP, Souter L, Zhang G (2006) Dutasteride affects progesterone metabolizing enzyme activity/expression in human breast cell lines resulting in suppression of cell proliferation and detachment. J Steroid Biochem Mol Biol 100(4–5):129–140. doi:10.1016/j.jsbmb.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  13. Guengerich FP (2001) Forging the links between metabolism and carcinogenesis. Mutat Res 488(3):195–209. doi:10.1016/S1383-5742(01)00059-X

    Article  CAS  PubMed  Google Scholar 

  14. Smith CA, Smith G, Wolf CR (1994) Genetic polymorphisms in xenobiotic metabolism. Eur J Cancer 30A(13):1921–1935. doi:10.1016/0959-8049(94)00382-F

    Article  CAS  PubMed  Google Scholar 

  15. Turesky RJ (2004) The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines. Curr Drug Metab 5(2):169–180. doi:10.2174/1389200043489036

    Article  CAS  PubMed  Google Scholar 

  16. Windmill KF, McKinnon RA, Zhu X, Gaedigk A, Grant DM, McManus ME (1997) The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mutat Res 376(1–2):153–160. doi:10.1016/S0027-5107(97)00038-9

    CAS  PubMed  Google Scholar 

  17. Brockstedt U, Krajinovic M, Richer C, Mathonnet G, Sinnett D, Pfau W, Labuda D (2002) Analyses of bulky DNA adduct levels in human breast tissue and genetic polymorphisms of cytochromes P450 (CYPs), myeloperoxidase (MPO), quinone oxidoreductase (NQO1), and glutathione S-transferases (GSTs). Mutat Res 516(1–2):41–47

    CAS  PubMed  Google Scholar 

  18. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PH, Biessy C, Dossus L, Lukanova A, Bingham S, Khaw KT, Allen NE, Bueno-de-Mesquita HB, van Gils CH, Grobbee D, Boeing H, Lahmann PH, Nagel G, Chang-Claude J, Clavel-Chapelon F, Fournier A, Thiebaut A, Gonzalez CA, Quiros JR, Tormo MJ, Ardanaz E, Amiano P, Krogh V, Palli D, Panico S, Tumino R, Vineis P, Trichopoulou A, Kalapothaki V, Trichopoulos D, Ferrari P, Norat T, Saracci R, Riboli E (2005) Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12(4):1071–1082. doi:10.1677/erc.1.01038

    Article  CAS  PubMed  Google Scholar 

  19. Key T, Appleby P, Barnes I, Reeves G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616

    CAS  PubMed  Google Scholar 

  20. Cavalieri EL, Rogan EG (2004) A unifying mechanism in the initiation of cancer and other diseases by catechol quinones. Ann N Y Acad Sci 1028:247–257. doi:10.1196/annals.1322.029

    Article  CAS  PubMed  Google Scholar 

  21. Pesch B, Ko Y, Brauch H, Hamann U, Harth V, Rabstein S, Pierl C, Fischer HP, Baisch C, Justenhoven C, Ranft U, Bruning T (2005) Factors modifying the association between hormone-replacement therapy and breast cancer risk. Eur J Epidemiol 20(8):699–711. doi:10.1007/s10654-005-0032-0

    Article  PubMed  Google Scholar 

  22. Andonova IE, Sarueva RB, Horvath AD, Simeonov VA, Dimitrov PS, Petropoulos EA, Ganev VS (2004) Balkan endemic nephropathy and genetic variants of glutathione S-transferases. J Nephrol 17(3):390–398

    CAS  PubMed  Google Scholar 

  23. Kohle C, Mohrle B, Munzel PA, Schwab M, Wernet D, Badary OA, Bock KW (2003) Frequent co-occurrence of the TATA box mutation associated with Gilbert’s syndrome (UGT1A1*28) with other polymorphisms of the UDP-glucuronosyltransferase-1 locus (UGT1A6*2 and UGT1A7*3) in Caucasians and Egyptians. Biochem Pharmacol 65(9):1521–1527. doi:10.1016/S0006-2952(03)00074-1

    Article  CAS  PubMed  Google Scholar 

  24. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ (2003) Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 55(1):56–65. doi:10.1159/000071811

    Article  CAS  PubMed  Google Scholar 

  25. Obreiter M, Fischer C, Chang-Claude J, Beckmann L (2005) SDMinP: a program to control the family wise error rate using step-down minP adjusted P-values. Bioinformatics 21(14):3183–3184. doi:10.1093/bioinformatics/bti480

    Article  CAS  PubMed  Google Scholar 

  26. Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for P-value adjustment. John Wiley & Sons, Inc., New York

    Google Scholar 

  27. R Development Core Team (2005) R: a language and environment for statistical computing. R foundation for statistical computing, Ref type: computer program, Vienna, Austria

  28. McBride CM, Brody LC (2007) Point: genetic risk feedback for common disease time to test the waters. Cancer Epidemiol Biomarkers Prev 16(9):1724–1726. doi:10.1158/1055-9965.EPI-07-0102

    Article  PubMed  Google Scholar 

  29. Thompson PA (2007) Counterpoint: genetic risk feedback for common disease time to test the waters. Cancer Epidemiol Biomarkers Prev 16(9):1727–1729. doi:10.1158/1055-9965.EPI-07-0213

    Article  PubMed  Google Scholar 

  30. Cheng TC, Chen ST, Huang CS, Fu YP, Yu JC, Cheng CW, Wu PE, Shen CY (2005) Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: a multigenic study on cancer susceptibility. Int J Cancer 113(3):345–353. doi:10.1002/ijc.20630

    Article  CAS  PubMed  Google Scholar 

  31. Raftogianis R, Creveling C, Weinshilboum R, Weisz J (2000) Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr 27:113–124

    CAS  PubMed  Google Scholar 

  32. Sparks R, Ulrich CM, Bigler J, Tworoger SS, Yasui Y, Rajan KB, Porter P, Stanczyk FZ, Ballard-Barbash R, Yuan X, Lin MG, McVarish L, Aiello EJ, McTiernan A (2004) UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res 6(5):R488–R498. doi:10.1186/bcr818

    Article  CAS  PubMed  Google Scholar 

  33. Srivastava SK, Singhal SS, Hu X, Awasthi YC, Zimniak P, Singh SV (1999) Differential catalytic efficiency of allelic variants of human glutathione S-transferase Pi in catalyzing the glutathione conjugation of thiotepa. Arch Biochem Biophys 366(1):89–94. doi:10.1006/abbi.1999.1217

    Article  CAS  PubMed  Google Scholar 

  34. Mitrunen K, Jourenkova N, Kataja V, Eskelinen M, Kosma VM, Benhamou S, Vainio H, Uusitupa M, Hirvonen A (2001) Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev 10(3):229–236

    CAS  PubMed  Google Scholar 

  35. Rylander-Rudqvist T, Wedren S, Granath F, Humphreys K, Ahlberg S, Weiderpass E, Oscarson M, Ingelman-Sundberg M, Persson I (2003) Cytochrome P450 1B1 gene polymorphisms and postmenopausal breast cancer risk. Carcinogenesis 24(9):1533–1539. doi:10.1093/carcin/bgg114

    Article  CAS  PubMed  Google Scholar 

  36. Rebbeck TR, Troxel AB, Shatalova EG, Blanchard R, Norman S, Bunin G, DeMichele A, Schinnar R, Berlin JA, Strom BL (2007) Lack of effect modification between estrogen metabolism genotypes and combined hormone replacement therapy in postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(6):1318–1320. doi:10.1158/1055-9965.EPI-07-0084

    Article  CAS  PubMed  Google Scholar 

  37. Diergaarde B, Potter JD, Jupe ER, Manjeshwar S, Shimasaki CD, Pugh TW, Defreese DC, Gramling BA, Evans I, White E (2008) Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 17(7):1751–1759. doi:10.1158/1055-9965.EPI-08-0168

    Article  CAS  PubMed  Google Scholar 

  38. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A 93(18):9776–9781. doi:10.1073/pnas.93.18.9776

    Article  CAS  PubMed  Google Scholar 

  39. Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT (2003) Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144(8):3382–3398. doi:10.1210/en.2003-0192

    Article  CAS  PubMed  Google Scholar 

  40. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 60(13):3440–3444

    CAS  PubMed  Google Scholar 

  41. Watanabe J, Shimada T, Gillam EM, Ikuta T, Suemasu K, Higashi Y, Gotoh O, Kawajiri K (2000) Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 10(1):25–33. doi:10.1097/00008571-200002000-00004

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez SV, Russo IH, Russo J (2006) Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast epithelial cells. Int J Cancer 118(8):1862–1868. doi:10.1002/ijc.21590

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Z, Kosinska W, Khmelnitsky M, Cavalieri EL, Rogan EG, Chakravarti D, Sacks PG, Guttenplan JB (2006) Mutagenic activity of 4-hydroxyestradiol, but not 2-hydroxyestradiol, in BB rat2 embryonic cells, and the mutational spectrum of 4-hydroxyestradiol. Chem Res Toxicol 19(3):475–479. doi:10.1021/tx0502645

    Article  CAS  PubMed  Google Scholar 

  44. Wawrzak Z, Duax WL, Strong PD, Weisz J (1998) Steroid structure and function. Molecular conformation of 4-hydroxyestradiol and its relation to other catechol estrogens. J Steroid Biochem 29(4):387–392. doi:10.1016/0022-4731(88)90247-6

    Article  Google Scholar 

  45. Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, Inoue K (1999) Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20(8):1607–1613. doi:10.1093/carcin/20.8.1607

    Article  CAS  PubMed  Google Scholar 

  46. Badawi AF, Cavalieri EL, Rogan EG (2001) Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 50(9):1001–1003. doi:10.1053/meta.2001.25592

    Article  CAS  PubMed  Google Scholar 

  47. Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM (2006) Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev 15(3):551–558. doi:10.1158/1055-9965.EPI-05-0801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to all women who participated in the MARIE and the GENICA breast cancer case-control studies. We gratefully acknowledge support by interviewers, the recruiting hospitals and physicians of the study regions as well as their collaborating pathologists. We thank R. Salazar and W. Höppner from BioGlobe GmBH, Hamburg for the extensive and excellent genotyping work, and S. Behrens, R. Birr, W. Busch, U. Eilber, B. Kaspereit, N. Knese, K. Smit, S. Brod, A. Seidel-Renkert and M. Gilbert for their excellent technical assistance.

The MARIE study was supported by the Deutsche Krebshilfe e.V., grant number 70-2892-BR I and the Hamburg Cancer Society. The GENICA study was supported by the Federal Ministry of Education and Research (BMBF) Germany grants and 01KW9975/5, 01KW9976/8, 01KW9977/0, 01KW0114 the Robert Bosch Foundation, Stuttgart, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, and Research Institute of Occupational Medicine of the German Social Accident Insurance (BGFA), Bochum, Germany. The work of the consortium was funded by BMBF Germany grants 01KH0401, 01KH0402, 01KH0410, 01KH0411.

Author information

Authors and Affiliations

Consortia

Additional information

The members of the consortium are given in the Appendix.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10549-009-0529-4

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 557 kb)

Appendix

Appendix

Consortium Members include:

German Cancer Research Center (DKFZ), Heidelberg, Germany: Jenny Chang-Claude, Lars Beckmann, Charlotte Corson, Rebecca Hein, Silke Kropp, Margie Parthimos (Division of Cancer Epidemiology); Thomas Dünnebier, Ute Hamann (Research Group on Molecular Genetics of Breast Cancer); Benedikt Brors, Roland Eils, Marc Zapatka (Division of Theoretical Bioinformatics).

Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology (IKP), Stuttgart, and University of Tübingen, Germany: Hiltrud Brauch, Christina Justenhoven.

University Medical Center Hamburg-Eppendorf, Hamburg, Germany: Dieter Flesch-Janys (Department of Medical Biometry and Epidemiology, Center for Experimental Medicine); Wilhelm Braendle (Department of Gynecological Endocrinology and Reproductive Medicine, Center for Gynaecology, Obstetrics and Pediatrics).

BGFA—Research Institute of Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (Bochum, Germany): Thomas Brüning, Beate Pesch, Anne Spickenheuer

Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany: Yon-Dschun Ko, Christian Baisch (Department of Internal Medicine).

Congenics AG, Hamburg, Germany: Norbert Dahmen

The Writing Group included (in alphabetical order):

Hiltrud Brauch, Jenny Chang-Claude, Charlotte Corson, Thomas Dünnebier, Ute

Hamann, Rebecca Hein, Christina Justenhoven, Margie Parthimos, Marc Zapatka

Rights and permissions

Reprints and permissions

About this article

Cite this article

The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res Treat 119, 463–474 (2010). https://doi.org/10.1007/s10549-009-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0407-0

Keywords

Navigation