Skip to main content

Advertisement

Log in

Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor α in T47D breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Potential interactions between prolactin (PRL) and estradiol (E2) in breast cancer cells were explored by examining the effect of PRL on estrogen receptor (ER) serine-118 phosphorylation, ER down-regulation, and E2-stimulated cell proliferation. Both E2 and PRL resulted in prolonged ERα serine-118 phosphorylation, but used different signaling pathways to achieve this end. Both hormones also decreased the amount of ERα, but the mechanisms were different: for E2, the decrease was rapid and resulted from proteasomic degradation, whereas for PRL the decrease was slow and resulted from an effect on levels of ERα mRNA. PRL alone had no effect on cell number, but enhanced the increase in number in response to E2. These results are the first to demonstrate similar effects of PRL and E2 on parameters considered key to E2’s effects. This suggests heretofore unrecognized and potentially important interactions between these two hormones in the natural history of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233

    Article  CAS  PubMed  Google Scholar 

  2. Blank EW, Wong PY, Lakshmanaswarmy R, Guzman R, Nandi S (2008) Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc Natl Acad Sci USA 105:3527–3532

    Article  CAS  PubMed  Google Scholar 

  3. Chen GG, Zeng Q, Tse GMK (2008) Estrogen and its receptors in cancer. Med Res Rev 28:954–974

    Article  CAS  PubMed  Google Scholar 

  4. Clevenger CV, Furth PA, Hankinson SE, Schuler LA (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27

    Article  CAS  PubMed  Google Scholar 

  5. Lakshmanaswamy R, Guzman RC, Nandi S (2008) Hormonal prevention of breast cancer: significance of promotional environment. Adv Exp Med Biol 617:469–475

    Article  PubMed  Google Scholar 

  6. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  7. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    Article  CAS  PubMed  Google Scholar 

  8. Jensen EV (1991) Overview of the nuclear receptor family. In: Parker M (ed) Nuclear hormone receptors. Academic Press, London, pp 1–13

    Google Scholar 

  9. Shiau AK, Barstad D, Loria PM, Cheng L, Kishner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  PubMed  Google Scholar 

  10. Castoria G, Migliaccio A, Bilancio A, Di Domenico M, deFalco A, Lombardi M, Fiorentino R, Varrichio L, Barone MV, Aurichio F (2001) PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20:6050–6059

    Article  CAS  PubMed  Google Scholar 

  11. Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12:152–156

    Article  CAS  PubMed  Google Scholar 

  12. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol Endocrinol 16:116–127

    Article  CAS  PubMed  Google Scholar 

  13. Castano E, Chen CW, Vorojeikina DP, Notides AC (1998) The role of phosphorylation in human estrogen receptor function. J Steroid Biochem Mol Biol 65:101–110

    Article  CAS  PubMed  Google Scholar 

  14. Endoh H, Maruyama K, Masuhiro Y, Koayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372

    CAS  PubMed  Google Scholar 

  15. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  CAS  PubMed  Google Scholar 

  16. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925

    Article  CAS  PubMed  Google Scholar 

  17. Mendez P, Garcia-Segura LM (2006) Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147:3027–3039

    Article  CAS  PubMed  Google Scholar 

  18. Migliaccio A, DiDomenico M, Castoria G, deFalco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    CAS  PubMed  Google Scholar 

  19. Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F (1998) Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018

    Article  CAS  PubMed  Google Scholar 

  20. Migliaccio A, Castoria G, DiDomenico M, deFalco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417

    Article  CAS  PubMed  Google Scholar 

  21. Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET (2008) Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol 40:23–34

    Article  CAS  PubMed  Google Scholar 

  22. Medunjanin S, Hermani A, De Servi B, Grisouard J, Rinke G, Mayer D (2005) Glycogen synthase kinase 3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J Biol Chem 280:33006–33014

    Article  CAS  PubMed  Google Scholar 

  23. Nirmala PB, Thampan RV (1995) Ubiquitination of the rat uterine estrogen receptor: dependence on estradiol. Biochem Biophys Res Commun 213:24–31

    Article  CAS  PubMed  Google Scholar 

  24. Pakdel F, LeGoff P, Katzenellenbogen BS (1993) An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J Steroid Biochem Mol Biol 46:663–672

    Article  CAS  PubMed  Google Scholar 

  25. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862

    Article  CAS  PubMed  Google Scholar 

  26. Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C (1994) Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91:5232–5236

    Article  CAS  PubMed  Google Scholar 

  27. Rui H, Kirken RA, Farrar WL (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269:5364–5368

    CAS  PubMed  Google Scholar 

  28. Tan D, Johnson DA, Wu W, Zeng L, Chen YH, Chen WY, Vonderhaar BK, Walker AM (2005) Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human PRL receptors in living human cells. Mol Endocrinol 19:1291–1303

    Article  CAS  PubMed  Google Scholar 

  29. Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV (2008) Prolyl isomerase cyclophilin A regulation of janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 68:7769–7778

    Article  CAS  PubMed  Google Scholar 

  30. Goupille O, Barnier JV, Guibert B, Paly J, Djiane J (2000) Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 159:133–146

    Article  CAS  PubMed  Google Scholar 

  31. Pezet A, Ferrag F, Kelly PA, Edery M (1997) Tyrosine docking sites of the rat prolactin receptor required for association and activation of Stat5. J Biol Chem 272:25043–25050

    Article  CAS  PubMed  Google Scholar 

  32. Ali S, Ali S (1998) Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716

    Article  CAS  PubMed  Google Scholar 

  33. Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM (1995) Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 270:13246–13253

    Article  CAS  PubMed  Google Scholar 

  34. Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13:4361–4369

    CAS  PubMed  Google Scholar 

  35. Clevenger CV, Torigoe T, Reed JC (1994) Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem 269:5559–5565

    CAS  PubMed  Google Scholar 

  36. Das R, Vonderhaar BK (1996) Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145

    CAS  PubMed  Google Scholar 

  37. Erwin RA, Kirken RA, Malabarba MG, Farrar WL, Rui H (1995) Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology 136:3512–3518

    Article  CAS  PubMed  Google Scholar 

  38. Peters CA, Maizels ET, Robertson MC, Shiu RP, Soloff MS, Hunzicker-Dunn M (2000) Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Mol Endocrinol 14:576–590

    Article  CAS  PubMed  Google Scholar 

  39. Acosta JJ, Munoz RM, Gonzalez L, Subtil-Rodriguez A, Dominguez-Caceres MA, Garcia-Martinez JM, Calcabrini A, Lazaro-Trueba I, Martin-Perez J (2003) Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 17:2268–2282

    Article  CAS  PubMed  Google Scholar 

  40. Berlanga JJ, Fresno Vara JA, Martin-Perez J, Garcia-Ruiz JP (1995) Prolactin receptor is associated with c-src kinase in rat liver. Mol Endocrinol 9:1461–1467

    Article  CAS  PubMed  Google Scholar 

  41. Clevenger CV, Medaglia MV (1994) The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol 8:674–681

    Article  CAS  PubMed  Google Scholar 

  42. Fresno Vara JA, Caceres MA, Silva A, Martin-Perez J (2001) Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 12:2171–2183

    CAS  PubMed  Google Scholar 

  43. Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX (2000) Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 18:693–704

    Article  CAS  PubMed  Google Scholar 

  44. al-Sakkaf KA, Dobson PR, Brown BL (1997) Prolactin induced tyrosine phosphorylation of p59fyn may mediate phosphatidylinositol 3-kinase activation in Nb2 cells. J Mol Endocrinol 19:347–350

    Article  CAS  PubMed  Google Scholar 

  45. Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yazaki Y, Kadowaki T (1998) Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem 273:15719–15726

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y-F, Jia H, Walker AM, Cukierman S (1992) K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J Cell Physiol 152:185–189

    Article  CAS  PubMed  Google Scholar 

  47. Chen TJ, Kuo C-YB, Tsai KF, Liu J-W, Chen D-Y, Walker AM (1998) Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology 139:609–616

    Article  CAS  PubMed  Google Scholar 

  48. Huang KT, Chen YH, Walker AM (2004) Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 37:406–412

    CAS  PubMed  Google Scholar 

  49. Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med 76:469–479

    Article  CAS  PubMed  Google Scholar 

  50. Philips N, McFadden K (2004) Inhibition of transforming growth factor-beta and matrix metalloproteinases by estrogen and prolactin in breast cancer cells. Cancer Lett 206:63–68

    Article  CAS  PubMed  Google Scholar 

  51. Pasapera Limon AM, Herrera-Munoz J, Gutierrez-Sagal R, Ulloa-Aguirre A (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17β-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene. Mol Cell Endocrinol 200:199–202

    Article  CAS  PubMed  Google Scholar 

  52. Murphy LC, Weitsman GE, Skliris GP, The EM, Li L, Peng B, Davie JR, Ung K, Niu Y-L, Troup S, Tomes L, Watson PH (2006) Potential role of estrogen receptor α (ERα) phosphorylated at serine 118 in human breast cancer in vivo. J Steroid Biochem Mol Biol 102:139–146

    Article  CAS  PubMed  Google Scholar 

  53. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–4931

    Article  CAS  PubMed  Google Scholar 

  54. Park K, Krishnan V, O’Malley B, Yamamoto Y, Gaynor R (2205) Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18:71–82

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the California Breast Cancer Research Program, 10PB-0127. Y.C. was a recipient of a Cancer Federation award during this period. K.H. was supported by an individual fellowship from the DOD Breast Cancer Research Program, BC0501103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameae M. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Huang, K., Chen, K.E. et al. Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor α in T47D breast cancer cells. Breast Cancer Res Treat 120, 369–377 (2010). https://doi.org/10.1007/s10549-009-0400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0400-7

Keywords

Navigation