Skip to main content

Advertisement

Log in

Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Caveolin-1 displays both tumour-suppressor and tumour-promoter properties in breast cancer. Using characterised preclinical cell models for the transition of oestrogen-sensitive (WT-MCF-7 cells) to a tamoxifen-resistant (TAM-R cells) phenotype we examined the role caveolin-1 in the development of hormone-resistant breast cancer. The WT-MCF-7 cells showed abundant expression of caveolin-1 which potentiated oestrogen-receptor (ERα) signalling and promoted cell growth despite caveolin-1 mediating inhibition of ERK signalling. In TAM-R cells caveolin-1 expression was negligible, repressed by EGF-R/ERK signalling. Pharmacological inhibition of EGFR/ERK in TAM-R cells restored caveolin-1 and also resulted in the emergence of pools of phosphorylated caveolin-1. WT-MCF-7 cells exposed to tamoxifen for upto 12 weeks displayed increased caveolin-1 (peaking by week 2) followed (after week 8) by a marked decrease as the cells progress to develop a stable tamoxifen-resistant phenotype. The targeted down-regulation (siRNA) of caveolin-1 in WT-MCF-7 cells reduced growth but did not affect their sensitivity to tamoxifen, suggesting loss of caveolin-1 alone is not sufficient to confer tamoxifen-resistance. Hyperactivation of EGFR/ERK is a feature of tamoxifen-resistant breast cancer cells, a principal driver of cell growth. Recombinant expression of caveolin-1 in TAM-R cells did not affect EGFR/ERK activity, potentially due to mislocalisation of caveolin-1 through hyperactivation of the mTOR pathway or altered caveolin-1 phosphorylation. This work defines a novel role for caveolin-1 with implications for the clinical course of breast cancer and identifies caveolin-1 as a potential drug target for the treatment of early oestrogen-dependent breast cancers. Further, the loss of caveolin-1 may have benefit as a molecular signature for tamoxifen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trails. Lancet 365:1687–1717. doi:10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  2. Powles T, Ashley S, Tidy A et al (2000) Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst 99:283–290. doi:10.1093/jnci/djk050

    Google Scholar 

  3. Clarke R, Leonessa F, Welch J et al (2001) Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 53:25–71

    PubMed  CAS  Google Scholar 

  4. Nicholson R, Gee J (2000) Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer. Br J Cancer 82:501–513. doi:10.1054/bjoc.1999.0954

    Article  PubMed  CAS  Google Scholar 

  5. Nicholson R, Hutcheson I, Hiscox S et al (2005) Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens: the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer. Endocr Relat Cancer 12:S29–S36. doi:10.1677/erc.1.00991

    Article  PubMed  CAS  Google Scholar 

  6. Long B, McKibben B, Lynch M, van den Berg H (1992) Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75–1 human breast cancer cell line. Br J Cancer 65:865–869

    PubMed  CAS  Google Scholar 

  7. Coutts A, Murphy L (1998) Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res 58:4071–4074

    PubMed  CAS  Google Scholar 

  8. El-Ashry D, Miller D, Kharbanda S et al (1997) Constituitive Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 15:423–435. doi:10.1038/sj.onc.1201198

    Article  PubMed  CAS  Google Scholar 

  9. Gee J, Robertson J, Ellis I et al (2001) Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 95:247–254. doi:10.1002/1097-0215(20010720)95:4≤247::AID-IJC1042≥3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  10. McClelland R, Barrow D, Madden T et al (2001) Enhanced epidermal growth factor receptor signalling in MCF7 breast cancer cells following long-term culture in the presence of the pure antioestrogen ICI 182, 780 (Faslodex). Endocrinology 142:2776–2788. doi:10.1210/en.142.7.2776

    Article  PubMed  CAS  Google Scholar 

  11. Knowlden J, Hutcheson I, Jones H et al (2003) Elevated levels of epidermal growth receptor/c-erB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044. doi:10.1210/en.2002-220620

    Article  PubMed  CAS  Google Scholar 

  12. Williams T, Lisanti M (2004) The caveolin genes: from cell biology to medicine. Ann Med 36:584–595. doi:10.1080/07853890410018899

    Article  PubMed  CAS  Google Scholar 

  13. Couet J, Li S, Okamoto T et al (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533. doi:10.1074/jbc.272.48.30429

    Article  PubMed  CAS  Google Scholar 

  14. Li S, Couet J, Lisanti M (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding domain, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190. doi:10.1074/jbc.271.46.29182

    Article  PubMed  CAS  Google Scholar 

  15. Li S, Okamoto T, Chun M et al (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701. doi:10.1074/jbc.270.26.15693

    Article  PubMed  CAS  Google Scholar 

  16. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438. doi:10.1074/jbc.272.48.30429

    Article  PubMed  CAS  Google Scholar 

  17. Engelman J, Chu C, Lin A et al (1998) Caveolin-mediated regulation of signalling along the p42/p44 MAP kinase cascade in vivo. FEBS Lett 428:205–211. doi:10.1016/S0014-5793(98)00470-0

    Article  PubMed  CAS  Google Scholar 

  18. Engelman J, Lee R, Karnezis A et al (1998) Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J Biol Chem 273:20448–20455. doi:10.1074/jbc.273.32.20448

    Article  PubMed  CAS  Google Scholar 

  19. Engelman J, Zhang X, Razani B et al (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341. doi:10.1074/jbc.274.45.32333

    Article  PubMed  CAS  Google Scholar 

  20. Lin M, DiVito M, Merajver S et al (2005) Regulation of pancreatic cancer cell migration and invasion by RhoC GTP ase and caveolin-1. Mol Cancer 4:21. doi:10.1186/1476-4598-4-21

    Article  PubMed  CAS  Google Scholar 

  21. Lee S, Reimer C, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397. doi:10.1038/sj.onc.1201661

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki T, Suzuki Y, Hanada K et al (1998) Reduction of caveolin-1 in tumorigenic human cell hybrids. J Biochem 124:383–388

    PubMed  CAS  Google Scholar 

  23. Zou W, McDaneld L, Smith L (2003) Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. Anticancer Res 23:4581–4586

    PubMed  CAS  Google Scholar 

  24. Fiucci G, Ravid D, Reich R et al (2002) Caveolin-1 inhibits anchorage-independent growth, ankoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375. doi:10.1038/sj.onc.1205300

    Article  PubMed  CAS  Google Scholar 

  25. Engelman J, Zang X, Lisanti M (1998) Genes encodoing human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436:403–410. doi:10.1016/S0014-5793(98)01134-X

    Article  PubMed  CAS  Google Scholar 

  26. Schlegel A, Wang C, Katzenellenbogen B et al (1999) Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem 274:33551–33556. doi:10.1074/jbc.274.47.33551

    Article  PubMed  CAS  Google Scholar 

  27. Schlegel A, Wang C, Pestell R et al (2002) Ligand-independent activation of oestrogen receptor alpha by caveolin-1. Biochem J 359:203–210. doi:10.1042/0264-6021:3590203

    Article  Google Scholar 

  28. Nasu Y, Timme T, Yang G et al (1998) Suppression of caveolin expression induces androgen sensitivity in metastatic androgen insensitive mouse prostate cancer cell lines. Nat Med 4:1062–1064. doi:10.1038/2048

    Article  PubMed  CAS  Google Scholar 

  29. Yang G, Truong L, Wheeler T et al (1999) Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59:5719–5723

    PubMed  CAS  Google Scholar 

  30. Rau K, Kang H, Cha T et al (2005) The mechanisms and managements of hormone therapy resistance in breast and prostate cancers. Endocr Relat Cancer 12:511–532. doi:10.1677/erc.1.01026

    Article  PubMed  CAS  Google Scholar 

  31. Hutcheson I, Knowlden J, Madden T et al (2003) Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 81:81–93. doi:10.1023/A:1025484908380

    Article  PubMed  CAS  Google Scholar 

  32. Cho K, Ryu S, Oh Y et al (2004) Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 279:42270–42278. doi:10.1074/jbc.M402352200

    Article  PubMed  CAS  Google Scholar 

  33. Shin J, Kim J, Ryu B et al (2006) Caveolin-1 is associated with VCAM-1 dependent adhesion of gastric cancer cells to endothelial cells. Cell Physiol Biochem 17:211–220. doi:10.1159/000094126

    Article  PubMed  CAS  Google Scholar 

  34. Song K, Li S, Okamoto T et al (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697. doi:10.1074/jbc.271.16.9690

    Article  PubMed  CAS  Google Scholar 

  35. Williams T, Lisanti M (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Cell Physiol 288:C494–C506. doi:10.1152/ajpcell.00458.2004

    Article  CAS  Google Scholar 

  36. Goetz J, Lajoie P, Wiseman S et al (2008) Caveolin-1 in tumour progression: the good, the bad and the ugly. Cancer Metastasis Rev 27:715–735. doi:10.1007/s10555-008-9160-9

    Article  PubMed  CAS  Google Scholar 

  37. Burgermeister E, Liscovitch M, Rocken C et al (2008) Caveats of caveolin-1 in cancer progression. Cancer Lett 268:187–201. doi:10.1016/j.canlet.2008.03.055

    Article  PubMed  CAS  Google Scholar 

  38. Zhang W, Razani B, Altschuler Y et al (2000) Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). J Biol Chem 275:20717–20725. doi:10.1074/jbc.M909895199

    Article  PubMed  CAS  Google Scholar 

  39. Park D, Hyangkyu L, Frank P et al (2002) Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signalling cascade. Mol Biol Cell 13:3416–3430. doi:10.1091/mbc.02-05-0071

    Article  PubMed  CAS  Google Scholar 

  40. Williams T, Medina F, Badano I et al (2004) Caveolin-1 gene promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. J Biol Chem 279:51630–51646. doi:10.1074/jbc.M409214200

    Article  PubMed  CAS  Google Scholar 

  41. Williams T, Sotgia F, Lee H et al (2006) Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis. Am J Pathol 169:1784–1801. doi:10.2353/ajpath.2006.060590

    Article  PubMed  CAS  Google Scholar 

  42. Hayashi K, Matsuda S, Machida K et al (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61:2361–2364

    PubMed  CAS  Google Scholar 

  43. Pinilla S, Honrado E, Hardisson E et al (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99:85–90. doi:10.1007/s10549-006-9184-1

    Article  PubMed  CAS  Google Scholar 

  44. Perrone G, Altomare V, Zagami M et al (2009) Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol 22:71–78. doi:10.1038/modpathol.2008.154

    Article  PubMed  CAS  Google Scholar 

  45. Zschocke J, Manthey D, Bayatti N et al (2002) Estrogen receptor alpha-mediated silencing of caveolin gene expression in neuronal cells. J Biol Chem 277:38772–38780. doi:10.1074/jbc.M205664200

    Article  PubMed  CAS  Google Scholar 

  46. Razandi M, Oh P, Pedram A et al (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16:100–115. doi:10.1210/me.16.1.100

    Article  PubMed  CAS  Google Scholar 

  47. Li T, Sotgia F, Vuolo M et al (2006) Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol 168:1998–2013. doi:10.2353/ajpath.2006.051089

    Article  PubMed  CAS  Google Scholar 

  48. Park S, Kim J, Kim Y (2005) Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathol 47:625–630. doi:10.1111/j.1365-2559.2005.02303.x

    Article  Google Scholar 

  49. Sagara Y, Mimori K, Yoshinaga K et al (2004) Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 91:959–965

    PubMed  CAS  Google Scholar 

  50. Britton D, Hutcheson I, Knowlden J et al (2006) Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 96:131–146. doi:10.1007/s10549-005-9070-2

    Article  PubMed  CAS  Google Scholar 

  51. Jones K, Jiang X, Yamamoto Y et al (2004) Tuberin is a component of lipid rafts and mediates caveolin-1 localisation: role of TSC2 in post-Golgi transport. Exp Cell Res 295:512–524. doi:10.1016/j.yexcr.2004.01.022

    Article  PubMed  CAS  Google Scholar 

  52. Jiang X, Yeung S (2006) Regulation of microtubule-dependent protein transport by the TSC2/mammalian target of rapamycin pathway. Cancer Res 66:2006

    Google Scholar 

  53. Aoki T, Nomura R, Fujimoto T (1999) Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 253:629–636. doi:10.1006/excr.1999.4652

    Article  PubMed  CAS  Google Scholar 

  54. Nomura R, Fujimoto T (1999) Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 10:975–986

    PubMed  CAS  Google Scholar 

  55. Li S, Seitz R, Lisanti M (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868. doi:10.1074/jbc.271.7.3863

    Article  PubMed  CAS  Google Scholar 

  56. Hiscox S, Morgan L, Green T et al (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97:263–274. doi:10.1007/s10549-005-9120-9

    Article  PubMed  CAS  Google Scholar 

  57. Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–17575. doi:10.1210/me.14.11.1750

    Article  PubMed  CAS  Google Scholar 

  58. Khan EM, Heidinger JM, Levy M et al (2006) Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493. doi:10.1074/jbc.M509332200

    Article  PubMed  CAS  Google Scholar 

  59. Dittman K, Mayer C, Kehlbach R, Rodemann H (2008) The radioprotector Bowman-Birk proteinase inhibitor stimulates DNA repair via the epidermal growth factor receptor phosphorylation and nuclear transport. Radiother Oncol 86:375–382. doi:10.1016/j.radonc.2008.01.007

    Article  CAS  Google Scholar 

  60. Joshi B, Strugnell S, Goetz JG et al (2008) Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68:8210–8220. doi:10.1158/0008-5472.CAN-08-0343

    Article  PubMed  CAS  Google Scholar 

  61. Van den Eynden G, Van Laere S, Van der Auwera I et al (2006) Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95:219–228. doi:10.1007/s10549-005-9002-1

    Article  PubMed  CAS  Google Scholar 

  62. Johnston SR (2005) Clinical trials of intracellular signal transductions inhibitors for breast cancer—a strategy to overcome endocrine resistance. Endocr Relat Cancer 1(suppl):S145–S157. doi:10.1677/erc.1.00992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Carol Dutkowski and Denise Barrow for their excellent technical assistance. To Dr. Andrew Hollins for construction of the recombinant caveolin-1 construct and Dr. Arwyn T. Jones for advice on subcellular fractionation. This research was generously supported by the Tenovus organisation and a Welsh School of Pharmacy studentship to NBPT. ‘Iressa’ and ‘Faslodex’ are trademarks of the AstraZeneca group of companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Gumbleton.

Additional information

Nicholas B.·P. Thomas, Iain R. Hutcheson and Lee Campbell have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N.B.P., Hutcheson, I.R., Campbell, L. et al. Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res Treat 119, 575–591 (2010). https://doi.org/10.1007/s10549-009-0355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0355-8

Keywords

Navigation