Skip to main content

Advertisement

Log in

The effect of thrombospondin-1 on breast cancer metastasis

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Thrombospondin-1 (TSP-1) has been proposed to have both pro-metastatic and anti-metastatic properties. To elucidate its role in breast cancer metastasis, we compared tumor progression in the polyomavirus middle T antigen (Pyt) transgenic mouse and the TSP-1-null Pyt transgenic mouse. We characterized the tumors in these mice at 45, 60 and 90 days of age. Tumor size, areas of necrosis, macrophage infiltration, levels of active and total TGF-β, vessel morphology, and lung and blood metastasis were measured in these mice. Mammary tumors were larger in the TSP-1-null mouse, and vessels were larger, but fewer in number in these tumors. The level of total TGF-β was significantly higher in the Pyt tumors at 90 days of age. Importantly, significantly fewer metastases were observed in the lungs of the TSP-1-null/Pyt mouse. Primary Pyt tumor cells were more migratory than TSP-1-null Pyt tumor cells on collagen. Treatment of Pyt mice with recombinant proteins that contain the type-1 repeats of TSP-1 resulted in decreased primary tumor growth and metastasis. Sequences that are involved in CD36 binding and those required for TGF-β activation mediated the inhibition of primary tumor growth. Thus, TSP-1 in the mammary tumor microenvironment inhibits angiogenesis and tumor growth, but promotes metastasis to the lung in the Pyt transgenic mouse. The ability of TSP-1 to support metastasis correlates with its ability to promote tumor cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin-1. Matrix Biol 19:597–614

    Article  PubMed  CAS  Google Scholar 

  2. Lawler J (2002) Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6:1–12

    Article  PubMed  CAS  Google Scholar 

  3. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    PubMed  Google Scholar 

  4. Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3:219–231

    Article  PubMed  CAS  Google Scholar 

  5. Lawler J, Miao WM, Duquette M, Bouck N, Bronson RT, Hynes RO (2001) Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol 159:1949–1956

    PubMed  CAS  Google Scholar 

  6. Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM (2002) Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2:473–483

    Article  PubMed  CAS  Google Scholar 

  7. Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, Tognazzi K, Dvorak HF (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5:1041–1056

    PubMed  CAS  Google Scholar 

  8. Schultz-Cherry S, Lawler J, Murphy-Ullrich JE (1994) The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta. J Biol Chem 269:26783–26788

    PubMed  CAS  Google Scholar 

  9. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93:1159–1170

    Article  PubMed  CAS  Google Scholar 

  10. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 98:12485–12490

    Article  PubMed  CAS  Google Scholar 

  11. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3:147–158

    Article  PubMed  CAS  Google Scholar 

  12. Bein K, Simons M (2000) Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275:32167–32173

    Article  PubMed  CAS  Google Scholar 

  13. Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8:349–357

    Article  PubMed  CAS  Google Scholar 

  14. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    Article  PubMed  CAS  Google Scholar 

  15. Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ (2000) Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37:209–218

    Article  PubMed  CAS  Google Scholar 

  16. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, Kerbel RS (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111

    PubMed  CAS  Google Scholar 

  17. Rafii DC, Psaila B, Butler J, Jin DK, Lyden D (2008) Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow derived cells. Arterioscler Thromb Vasc Biol 28:217–222

    Article  PubMed  CAS  Google Scholar 

  18. Magnetto S, Bruno-Bossio G, Voland C, Lecerf J, Lawler J, Delmas P, Silverstein R, Clezardin P (1998) CD36 mediates binding of soluble thrombospondin-1 but not cell adhesion and haptotaxis on immobilized thrombospondin-1. Cell Biochem Funct 16:211–221

    Article  PubMed  CAS  Google Scholar 

  19. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP (1997) CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138:707–717

    Article  PubMed  CAS  Google Scholar 

  20. Urquidi V, Sloan D, Kawai K, Agarwal D, Woodman AC, Tarin D, Goodison S (2002) Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clin Cancer Res 8:61–74

    PubMed  CAS  Google Scholar 

  21. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 54:6504–6511

    PubMed  CAS  Google Scholar 

  22. Yabkowitz R, Mansfield PJ, Dixit VM, Suchard SJ (1993) Motility of human carcinoma cells in response to thrombospondin: relationship to metastatic potential and thrombospondin structural domains. Cancer Res 53:378–387

    PubMed  CAS  Google Scholar 

  23. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968

    Article  PubMed  CAS  Google Scholar 

  24. Albo D, Rothman VL, Roberts DD, Tuszynski GP (2000) Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. Br J Cancer 83:298–306

    Article  PubMed  CAS  Google Scholar 

  25. Albo D, Berger DH, Wang TN, Hu X, Rothman V, Tuszynski GP (1997) Thrombospondin-1 and transforming growth factor-beta l promote breast tumor cell invasion through up-regulation of the plasminogen/plasmin system. Surgery 122:493–499; discussion 499–500

    Article  PubMed  CAS  Google Scholar 

  26. Wang TN, Qian X, Granick MS, Solomon MP, Rothman VL, Berger DH, Tuszynski GP (1996) Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res 63:39–43

    Article  PubMed  CAS  Google Scholar 

  27. Albo D, Berger DH, Tuszynski GP (1998) The effect of thrombospondin-1 and TGF-beta 1 on pancreatic cancer cell invasion. J Surg Res 76:86–90

    Article  PubMed  CAS  Google Scholar 

  28. Albo D, Arnoletti JP, Castiglioni A, Granick MS, Solomon MP, Rothman VL, Tuszynski GP (1994) Thrombospondin (TSP) and transforming growth factor beta 1 (TGF-beta) promote human A549 lung carcinoma cell plasminogen activator inhibitor type 1 (PAI-1) production and stimulate tumor cell attachment in vitro. Biochem Biophys Res Commun 203:857–865

    Article  PubMed  CAS  Google Scholar 

  29. Wang TN, Qian XH, Granick MS, Solomon MP, Rothman VL, Tuszynski GP (1995) The effect of thrombospondin on oral squamous carcinoma cell invasion of collagen. Am J Surg 170:502–505

    Article  PubMed  CAS  Google Scholar 

  30. Arnoletti JP, Albo D, Granick MS, Solomon MP, Castiglioni A, Rothman VL, Tuszynski GP (1995) Thrombospondin and transforming growth factor-beta 1 increase expression of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in human MDA-MB-231 breast cancer cells. Cancer 76:998–1005

    Article  PubMed  CAS  Google Scholar 

  31. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  32. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, Nicholson B, Cardiff RD, MacLeod CL (2001) Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res 61:8298–8305

    PubMed  CAS  Google Scholar 

  33. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126

    PubMed  Google Scholar 

  34. Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, Hynes RO (1998) Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 101:982–992

    Article  PubMed  CAS  Google Scholar 

  35. Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J (2001) Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms. Cancer Res 61:7830–7839

    PubMed  CAS  Google Scholar 

  36. Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J (2004) Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol 165:541–552

    PubMed  CAS  Google Scholar 

  37. Inoue T, Plieth D, Venkov CD, Xu C, Neilson EG (2005) Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int 67:2488–2493

    Article  PubMed  Google Scholar 

  38. Lanari C, Luthy I, Lamb CA, Fabris V, Pagano E, Helguero LA, Sanjuan N, Merani S, Molinolo A (2001) Five novel hormone-responsive cell lines derived frommurine mamnary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins. Cancer Res 61:293–302

    PubMed  CAS  Google Scholar 

  39. Lin EY, Pollard JW (2004) Macrophages: modulators of breast cancer progression. Novartis Found Symp 256:158–168; discussion 168–172, 259–169

    Article  PubMed  CAS  Google Scholar 

  40. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  PubMed  CAS  Google Scholar 

  41. Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67:5064–5066

    Article  PubMed  CAS  Google Scholar 

  42. Yee KO, Connolly CM, Pines M, Lawler J (2006) Halofuginone inhibits tumor growth in the polyoma middle T antigen mouse via a thrombospondin-1 independent mechanism. Cancer Biol Ther 5:218–224

    PubMed  CAS  Google Scholar 

  43. Zhang X, Lawler J (2007) Thrombospondin-based antiangiogenic therapy. Microvasc Res 74:90–99

    Article  PubMed  CAS  Google Scholar 

  44. Anderson JC, Grammer JR, Wang W, Nabors LB, Henkin J, Stewart JE Jr, Gladson CL (2007) ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis. Cancer Biol Ther 6:454–462

    Article  PubMed  CAS  Google Scholar 

  45. Isenberg JS, Yu C, Roberts DD (2008) Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells. Biochem Pharmacol 75:875–882

    Article  PubMed  CAS  Google Scholar 

  46. Harpel JG, Schultz-Cherry S, Murphy-Ullrich JE, Rifkin DB (2001) Tamoxifen and estrogen effects on TGF-beta formation: role of thrombospondin-1, alphavbeta3, and integrin-associated protein. Biochem Biophys Res Commun 284:11–14

    Article  PubMed  CAS  Google Scholar 

  47. Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274:13586–13593

    Article  PubMed  CAS  Google Scholar 

  48. Ribeiro SM, Schultz-Cherry S, Murphy-Ullrich JE (1995) Heparin-binding vitronectin up-regulates latent TGF-beta production by bovine aortic endothelial cells. J Cell Sci 108(Pt 4):1553–1561

    PubMed  CAS  Google Scholar 

  49. Schultz-Cherry S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, Roberts DD, Murphy-Ullrich JE (1995) Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 270:7304–7310

    Article  PubMed  CAS  Google Scholar 

  50. Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE (1994) Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem 269:26775–26782

    PubMed  CAS  Google Scholar 

  51. Schultz-Cherry S, Murphy-Ullrich JE (1993) Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 122:923–932

    Article  PubMed  CAS  Google Scholar 

  52. Murphy-Ullrich JE, Schultz-Cherry S, Hook M (1992) Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 3:181–188

    PubMed  CAS  Google Scholar 

  53. Tan K, Duquette M, Liu JH, Dong Y, Zhang R, Joachimiak A, Lawler J, Wang JH (2002) Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 159:373–382

    Article  PubMed  CAS  Google Scholar 

  54. Dawson DW, Volpert OV, Pearce SF, Schneider AJ, Silverstein RL, Henkin J, Bouck NP (1999) Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol 55:332–338

    PubMed  CAS  Google Scholar 

  55. Simantov R, Silverstein RL (2003) CD36: a critical anti-angiogenic receptor. Front Biosci 8:s874–s882

    Article  PubMed  CAS  Google Scholar 

  56. Nakagawa T, Martinez SR, Goto Y, Koyanagi K, Kitago M, Shingai T, Elashoff DA, Ye X, Singer FR, Giuliano AE, Hoon DS (2007) Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clin Cancer Res 13:4105–4110

    Article  PubMed  CAS  Google Scholar 

  57. Alix-Panabieres C, Muller V, Pantel K (2007) Current status in human breast cancer micrometastasis. Curr Opin Oncol 19:558–563

    PubMed  Google Scholar 

  58. Lang JE, Hall CS, Singh B, Lucci A (2007) Significance of micrometastasis in bone marrow and blood of operable breast cancer patients: research tool or clinical application? Expert Rev Anticancer Ther 7:1463–1472

    Article  PubMed  Google Scholar 

  59. Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616

    Article  PubMed  CAS  Google Scholar 

  60. Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244:143–163

    Article  PubMed  CAS  Google Scholar 

  61. Tuck AB, Chambers AF, Allan AL (2007) Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem 102:859–868

    Article  PubMed  CAS  Google Scholar 

  62. Moura R, Tjwa M, Vandervoort P, Cludts K, Hoylaerts MF (2007) Thrombospondin-1 activates medial smooth muscle cells and triggers neointima formation upon mouse carotid artery ligation. Arterioscler Thromb Vasc Biol 27:2163–2169

    Article  PubMed  CAS  Google Scholar 

  63. Tuszynski GP, Gasic TB, Rothman VL, Knudsen KA, Gasic GJ (1987) Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res 47:4130–4133

    PubMed  CAS  Google Scholar 

  64. Wang TN, Qian XH, Granick MS, Solomon MP, Rothman VL, Berger DH, Tuszynski GP (1996) Inhibition of breast cancer progression by an antibody to a thrombospondin-1 receptor. Surgery 120:449–454

    Article  PubMed  CAS  Google Scholar 

  65. Zhang X, Galardi E, Duquette M, Delic M, Lawler J, Parangi S (2005) Antiangiogenic treatment with the three thrombospondin-1 type 1 repeats recombinant protein in an orthotopic human pancreatic cancer model. Clin Cancer Res 11:2337–2344

    Article  PubMed  CAS  Google Scholar 

  66. Byrne GJ, Hayden KE, McDowell G, Lang H, Kirwan CC, Tetlow L, Kumar S, Bundred NJ (2007) Angiogenic characteristics of circulating and tumoural thrombospondin-1 in breast cancer. Int J Oncol 31:1127–1132

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank fellow lab members Eric Galardi for assistance with the mice and Xuefeng Zhang for helpful discussion on the project. We also would like to thank Ricky Sanchez for sectioning the frozen tumors. Karen Yee was supported by a fellowship from Aid for Cancer Research (Newton, MA). Raymond Washington is supported by a training grant from the National Institute of Health (T32HL007893). This work was supported by grants from the National Institute of Health (CA92644 and HL68003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Lawler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, K.O., Connolly, C.M., Duquette, M. et al. The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 114, 85–96 (2009). https://doi.org/10.1007/s10549-008-9992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9992-6

Keywords

Navigation