Skip to main content

Advertisement

Log in

Daidzein-metabolizing phenotypes in relation to mammographic breast density among premenopausal women in the United States

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Mammographic breast density is an established marker of breast cancer risk, and is hormonally sensitive. Studies suggest that production of the daidzein metabolites equol and O-Desmethylangolensin (ODMA) may be associated with hormones and hormonally mediated factors, but few studies have assessed relationships between the capacity to produce these metabolites and breast density. Objective To evaluate the relationship between equol- and ODMA-producer phenotypes and breast density in premenopausal women in the United States. Design Two hundred and three women attended a clinic visit and 200 provided a urine sample following a 3 day soy challenge. Samples were analyzed for isoflavones by GC–MS to determine daidzein-metabolizing phenotypes. Percent density on recent (<14 month prior to their clinic visit) mammograms was assessed by one reader using a computer-assisted method. Multiple regression analysis was used to assess relationships between the production of equol and ODMA and breast density. Results 55(27.5%) and 182(91%) women were classed as equol- and ODMA-producers (>87.5 ng/ml urine), respectively. In unadjusted and adjusted analyses, there were no differences in breast density between producers and non-producers of either equol or ODMA (P > 0.05). Conclusion In this population of low-soy consuming premenopausal women, there were no associations between daidzein-metabolizing phenotypes and breast density, suggesting that these phenotypes per se do not influence premenopausal breast density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd NF, Rommens JM, Vogt K et al (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808. doi:10.1016/S1470-2045(05)70390-9

    Article  PubMed  Google Scholar 

  2. Clemons M, Goss P (2001) Estrogen and the risk of breast cancer. N Engl J Med 344:276–285. doi:10.1056/NEJM200101253440407

    Article  PubMed  CAS  Google Scholar 

  3. Kurzer MS (2002) Hormonal effects of soy in premenopausal women and men. J Nutr 132:570S–573S

    PubMed  Google Scholar 

  4. Kurzer MS (2000) Hormonal effects of soy isoflavones: studies in premenopausal and postmenopausal women. J Nutr 130:660S–661S

    PubMed  CAS  Google Scholar 

  5. Trock BJ, Hilakivi-Clarke L, Clarke R (2006) Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 98:459–471

    Article  PubMed  CAS  Google Scholar 

  6. Maskarinec G, Takata Y, Franke AA et al (2004) A 2-year soy intervention in premenopausal women does not change mammographic densities. J Nutr 134:3089–3094

    PubMed  CAS  Google Scholar 

  7. Maskarinec G, Meng L (2001) An investigation of soy intake and mammographic characteristics in Hawaii. Breast Cancer Res 3:134–141. doi:10.1186/bcr285

    Article  PubMed  CAS  Google Scholar 

  8. Maskarinec G, Lyu LC, Meng L et al (2001) Determinants of mammographic densities among women of Asian, Native Hawaiian, and Caucasian ancestry. Ethn Dis 11:44–50

    PubMed  CAS  Google Scholar 

  9. Nagel G, Mack U, von Fournier D et al (2005) Dietary phytoestrogen intake and mammographic density—results of a pilot study. Eur J Med Res 10:389–394

    PubMed  CAS  Google Scholar 

  10. Ursin G, Sun CL, Koh WP et al (2006) Associations between soy, diet, reproductive factors, and mammographic density in Singapore chinese women. Nutr Cancer 56:128–135. doi:10.1207/s15327914nc5602_2

    Article  PubMed  CAS  Google Scholar 

  11. Maskarinec G, Williams AE, Carlin L (2003) Mammographic densities in a 1 year isoflavone intervention. Eur J Cancer Prev 12:165–169. doi:10.1097/00008469-200304000-00011

    Article  PubMed  CAS  Google Scholar 

  12. Atkinson C, Warren RM, Sala E et al (2004) Red-clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial. Breast Cancer Res 6:R170–R179. ISRCTN42940165. doi:10.1186/bcr773

    Google Scholar 

  13. Rowland IR, Wiseman H, Sanders TA et al (2000) Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 36:27–32. doi:10.1207/S15327914NC3601_5

    Article  PubMed  CAS  Google Scholar 

  14. Akaza H, Miyanaga N, Takashima N et al (2002) Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration. Jpn J Clin Oncol 32:296–300. doi:10.1093/jjco/hyf064

    Article  PubMed  Google Scholar 

  15. Kelly GE, Joannou GE, Reeder AY et al (1995) The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med 208:40–43

    PubMed  CAS  Google Scholar 

  16. Lampe JW, Karr SC, Hutchins AM et al (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 217:335–339

    PubMed  CAS  Google Scholar 

  17. Hutchins AM, Slavin JL, Lampe JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J Am Diet Assoc 95:545–551. doi:10.1016/S0002-8223(95)00149-2

    Article  PubMed  CAS  Google Scholar 

  18. Arai Y, Uehara M, Sato Y et al (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10:127–135

    PubMed  CAS  Google Scholar 

  19. Frankenfeld CL, McTiernan A, Tworoger SS et al (2004) Serum steroid hormones, sex hormone-binding globulin concentrations, and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes. J Steroid Biochem Mol Biol 88:399–408. doi:10.1016/j.jsbmb.2004.01.006

    Article  PubMed  CAS  Google Scholar 

  20. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230:155–170

    CAS  Google Scholar 

  21. Evans BA, Griffiths K, Morton MS (1995) Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol 147:295–302

    Article  PubMed  CAS  Google Scholar 

  22. Pelissero C, Lenczowski MJ, Chinzi D et al (1996) Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57:215–223. doi:10.1016/0960-0760(95)00261-8

    Article  PubMed  CAS  Google Scholar 

  23. Adlercreutz H, Bannwart C, Wahala K et al (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44:147–153. doi:10.1016/0960-0760(93)90022-O

    Article  PubMed  CAS  Google Scholar 

  24. Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    PubMed  CAS  Google Scholar 

  25. Adlercreutz H, Martin F, Pulkkinen M et al (1976) Intestinal metabolism of estrogens. J Clin Endocrinol Metab 43:497–505

    Article  PubMed  CAS  Google Scholar 

  26. Duncan AM, Merz-Demlow BE, Xu X et al (2000) Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev 9:581–586

    PubMed  CAS  Google Scholar 

  27. Frankenfeld CL, McTiernan A, Aiello EJ et al (2004) Mammographic density in relation to daidzein-metabolizing phenotypes in overweight, postmenopausal women. Cancer Epidemiol Biomarkers Prev 13:1156–1162

    PubMed  CAS  Google Scholar 

  28. Fuhrman BJ, Teter BE, Barba M et al (2008) Equol status modifies the association of soy intake and mammographic density in a sample of postmenopausal women. Cancer Epidemiol Biomarkers Prev 17:33–42. doi:10.1158/1055-9965.EPI-07-0193

    Article  PubMed  CAS  Google Scholar 

  29. Atkinson C, Newton KM, Bowles EJ et al (2008) Demographic, anthropometric, and lifestyle factors and dietary intakes in relation to daidzein-metabolizing phenotypes among premenopausal women in the United States. Am J Clin Nutr 87:679–687

    PubMed  CAS  Google Scholar 

  30. Taplin SH, Ichikawa L, Buist DS et al (2004) Evaluating organized breast cancer screening implementation: the prevention of late-stage disease? Cancer Epidemiol Biomarkers Prev 13:225–234. doi:10.1158/1055-9965.EPI-03-0206

    Article  PubMed  Google Scholar 

  31. Liberman L, Menell JH (2002) Breast imaging reporting and data system (BI-RADS). Radiol Clin North Am 40:409–430. doi:10.1016/S0033-8389(01)00017-3

    Article  PubMed  Google Scholar 

  32. Atkinson C, Newton KM, Stanczyk FZ et al (2008) Daidzein-metabolizing phenotypes in relation to serum hormones and sex hormone binding globulin, and urinary estrogen metabolites in premenopausal women in the United States. Cancer Causes Control (Epub ahead of print)

  33. Boyd NF, Byng JW, Jong RA et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675. doi:10.1093/jnci/87.9.670

    Article  PubMed  CAS  Google Scholar 

  34. Yong M, Atkinson C, Newton KM et al (2008) Associations between endogenous sex hormone levels and mammographic and bone densities in premenopausal women (In preparation)

  35. Bonorden MJ, Greany KA, Wangen KE et al (2004) Consumption of Lactobacillus acidophilus and Bifidobacterium longum do not alter urinary equol excretion and plasma reproductive hormones in premenopausal women. Eur J Clin Nutr 58:1635–1642. doi:10.1038/sj.ejcn.1602020

    Article  PubMed  CAS  Google Scholar 

  36. Wiseman H, Casey K, Bowey EA et al (2004) Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am J Clin Nutr 80:692–699

    PubMed  CAS  Google Scholar 

  37. Boyd NF, Stone J, Martin LJ et al (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87:876–882. doi:10.1038/sj.bjc.6600537

    Article  PubMed  CAS  Google Scholar 

  38. Boyd N, Martin L, Stone J et al (2002) A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomarkers Prev 11:1048–1053

    PubMed  Google Scholar 

  39. Cerhan JR, Sellers TA, Janney CA et al (2005) Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomarkers Prev 14:1502–1508. doi:10.1158/1055-9965.EPI-04-0762

    Article  PubMed  Google Scholar 

  40. Vachon CM, Kuni CC, Anderson K et al (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662. doi:10.1023/A:1008926607428

    Article  PubMed  CAS  Google Scholar 

  41. Noh JJ, Maskarinec G, Pagano I et al (2006) Mammographic densities and circulating hormones: a cross-sectional study in premenopausal women. Breast 15:20–28. doi:10.1016/j.breast.2005.04.014

    Article  PubMed  Google Scholar 

  42. Titus-Ernstoff L, Tosteson AN, Kasales C et al (2006) Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control 17:1281–1290. doi:10.1007/s10552-006-0071-1

    Article  PubMed  Google Scholar 

  43. Riza E, dos Santos Silva I, De Stavola B et al (2005) Correlates of high-density mammographic parenchymal patterns by menopausal status in a rural population in Northern Greece. Eur J Cancer 41:590–600. doi:10.1016/j.ejca.2004.12.014

    Article  PubMed  Google Scholar 

  44. Riza E, dos Santos Silva I, De Stavola B et al (2001) Urinary estrogen metabolites and mammographic parenchymal patterns in postmenopausal women. Cancer Epidemiol Biomarkers Prev 10:627–634

    PubMed  CAS  Google Scholar 

  45. Tamimi RM, Hankinson SE, Colditz GA et al (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:2641–2647. doi:10.1158/1055-9965.EPI-05-0558

    Article  PubMed  CAS  Google Scholar 

  46. Aiello EJ, Tworoger SS, Yasui Y et al (2005) Associations among circulating sex hormones, insulin-like growth factor, lipids, and mammographic density in postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:1411–1417. doi:10.1158/1055-9965.EPI-04-0920

    Article  PubMed  CAS  Google Scholar 

  47. Boyd NF, Lockwood GA, Byng JW et al (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144

    PubMed  CAS  Google Scholar 

  48. McKinlay SM, Brambilla DJ, Posner JG (1992) The normal menopause transition. Maturitas 14:103–115. doi:10.1016/0378-5122(92)90003-M

    Article  PubMed  CAS  Google Scholar 

  49. McKinlay SM (1996) The normal menopause transition: an overview. Maturitas 23:137–145. doi:10.1016/0378-5122(95)00985-X

    Article  PubMed  CAS  Google Scholar 

  50. Burger HG, Dudley EC, Hopper JL et al (1999) Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J Clin Endocrinol Metab 84:4025–4030. doi:10.1210/jc.84.11.4025

    Article  PubMed  CAS  Google Scholar 

  51. Burger HG, Dudley EC, Robertson DM et al (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275. doi:10.1210/rp.57.1.257

    Article  PubMed  CAS  Google Scholar 

  52. Frankenfeld CL, Atkinson C, Thomas WK et al (2005) High concordance of daidzein-metabolizing phenotypes in individuals measured 1–3 years apart. Br J Nutr 94:873–876. doi:10.1079/BJN20051565

    Article  PubMed  CAS  Google Scholar 

  53. Akaza H, Miyanaga N, Takashima N et al (2004) Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol 34:86–89. doi:10.1093/jjco/hyh015

    Article  PubMed  Google Scholar 

  54. Lampe JW, Skor HE, Li S et al (2001) Wheat bran and soy protein feeding do not alter urinary excretion of the isoflavan equol in premenopausal women. J Nutr 131:740–744

    PubMed  CAS  Google Scholar 

  55. Vedrine N, Mathey J, Morand C et al (2006) One-month exposure to soy isoflavones did not induce the ability to produce equol in postmenopausal women. Eur J Clin Nutr 60:1039–1045. doi:10.1038/sj.ejcn.1602415

    Article  PubMed  CAS  Google Scholar 

  56. Nettleton JA, Greany KA, Thomas W et al (2004) Plasma phytoestrogens are not altered by probiotic consumption in postmenopausal women with and without a history of breast cancer. J Nutr 134:1998–2003

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Kathy Plant, Kelly Ehrlich, and the GH Department for screening interviews, clinic visits and study coordination, Wendy Thomas for isoflavone analyses, JoAnn Prunty for creatinine analyses, and all of the study participants. This work was supported by the National Institute of Health (R01CA97366 and U01CA63731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna W. Lampe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, C., Newton, K.M., Aiello Bowles, E.J. et al. Daidzein-metabolizing phenotypes in relation to mammographic breast density among premenopausal women in the United States. Breast Cancer Res Treat 116, 587–594 (2009). https://doi.org/10.1007/s10549-008-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0199-7

Keywords

Navigation