Skip to main content

Advertisement

Log in

Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

E2:

17β-Estradiol

ER:

Estrogen receptor

ICI:

ICI 182,780

CXCR4:

Chemokine receptor (CXC) 4

PI3K:

Phosphatidylinositol-3-kinase

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

References

  1. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56. doi:10.1038/35065016

    Article  PubMed  CAS  Google Scholar 

  2. Konecny G, Pauletti G, Pegram M, Untch M, Dandekar S, Aguilar Z et al (2003) Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 95:142–153

    PubMed  CAS  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182. doi:10.1126/science.3798106

    Article  PubMed  CAS  Google Scholar 

  4. Yu D, Hung MC (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115–6121. doi:10.1038/sj.onc.1203972

    Article  PubMed  CAS  Google Scholar 

  5. Chen Y, Stamatoyannopoulos G, Song CZ (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63:4801–4804

    PubMed  CAS  Google Scholar 

  6. Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY (2005) CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther 12:84–89. doi:10.1038/sj.cgt.7700770

    Article  PubMed  CAS  Google Scholar 

  7. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D et al (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64:8604–8612. doi:10.1158/0008-5472.CAN-04-1844

    Article  PubMed  CAS  Google Scholar 

  8. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK et al (2004) Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64:4302–4308. doi:10.1158/0008-5472.CAN-03-3958

    Article  PubMed  CAS  Google Scholar 

  9. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    Article  PubMed  CAS  Google Scholar 

  10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549. doi:10.1016/S1535-6108(03)00132-6

    Article  PubMed  CAS  Google Scholar 

  11. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi:10.1038/nature03799

    Article  PubMed  CAS  Google Scholar 

  12. Salvucci O, Bouchard A, Baccarelli A, Deschenes J, Sauter G, Simon R et al (2006) The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat 97:275–283. doi:10.1007/s10549-005-9121-8

    Article  PubMed  CAS  Google Scholar 

  13. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. doi:10.1056/NEJM200103153441101

    Article  PubMed  CAS  Google Scholar 

  14. Read LD, Keith D Jr, Slamon DJ, Katzenellenbogen BS (1990) Hormonal modulation of HER-2/neu protooncogene messenger ribonucleic acid and p185 protein expression in human breast cancer cell lines. Cancer Res 50:3947–3951

    PubMed  CAS  Google Scholar 

  15. Lal P, Tan LK, Chen B (2005) Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3, 655 invasive breast carcinomas. Am J Clin Pathol 123:541–546. doi:10.1309/YMJ3A83TB39MRUT9

    Article  PubMed  CAS  Google Scholar 

  16. Osborne CK, Shou J, Massarweh S, Schiff R (2005) Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11:865s–870s

    PubMed  CAS  Google Scholar 

  17. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E et al (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24:85–95. doi:10.1007/BF01961241

    Article  PubMed  CAS  Google Scholar 

  18. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–469. doi:10.1016/j.ccr.2004.09.027

    Article  PubMed  CAS  Google Scholar 

  19. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574. doi:10.1210/en.2003-0567

    Article  PubMed  CAS  Google Scholar 

  20. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  22. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587. doi:10.1038/nrd1134

    Article  PubMed  CAS  Google Scholar 

  23. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193. doi:10.1016/j.cell.2005.02.031

    Article  PubMed  CAS  Google Scholar 

  24. Berger MS, Locher GW, Saurer S, Gullick WJ, Waterfield MD, Groner B et al (1988) Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48:1238–1243

    PubMed  CAS  Google Scholar 

  25. Gago FE, Fanelli MA, Ciocca DR (2006) Co-expression of steroid hormone receptors (estrogen receptor alpha and/or progesterone receptors) and Her2/neu (c-erbB-2) in breast cancer: clinical outcome following tamoxifen-based adjuvant therapy. J Steroid Biochem Mol Biol 98:36–40. doi:10.1016/j.jsbmb.2005.07.002

    Article  PubMed  CAS  Google Scholar 

  26. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38:1289–1297. doi:10.1038/ng1901

    Article  PubMed  CAS  Google Scholar 

  27. Frasor J, Stossi F, Danes JM, Komm B, Lyttle CR, Katzenellenbogen BS (2004) Selective estrogen receptor modulators: Discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res 64:1522–1533. doi:10.1158/0008-5472.CAN-03-3326

    Article  PubMed  CAS  Google Scholar 

  28. Green KA, Carroll JS (2007) Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7:713–722. doi:10.1038/nrc2211

    Article  PubMed  CAS  Google Scholar 

  29. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3:e87. doi:10.1371/journal.pgen.0030087

    Article  PubMed  CAS  Google Scholar 

  30. Barnett DH, Sheng S, Howe Charn T, Waheed A, Sly WS, Lin C-Y et al (2008) Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res 68:3505–3515. doi:10.1158/0008-5472.CAN-07-6151

    Article  PubMed  CAS  Google Scholar 

  31. Katzenellenbogen BS, Frasor J (2004) Therapeutic targeting in the estrogen receptor hormonal pathway. Semin Oncol 31:28–38. doi:10.1053/j.seminoncol.2004.01.004

    Article  PubMed  CAS  Google Scholar 

  32. Harrington WR, Kim SH, Funk CC, Madak-Erdogan Z, Schiff R, Katzenellenbogen JA et al (2006) Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol Endocrinol 20:491–502. doi:10.1210/me.2005-0186

    Article  PubMed  CAS  Google Scholar 

  33. Madak-Erdogan Z, Kieser KJ, Kim SH, Komm B, Katzenellenbogen JA, Katzenellenbogen BS (2008) Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol Endocrinol 22:2116–2127. doi:10.1210/me.2008-0059

    Article  PubMed  CAS  Google Scholar 

  34. Massarweh S, Schiff R (2007) Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res 13:1950–1954. doi:10.1158/1078-0432.CCR-06-2540

    Article  PubMed  CAS  Google Scholar 

  35. Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23:1616–1622. doi:10.1200/JCO.2005.10.036

    Article  PubMed  CAS  Google Scholar 

  36. Pietras RJ, Marquez-Garban DC (2007) Membrane-associated estrogen receptor signaling pathways in human cancers. Clin Cancer Res 13:4672–4676. doi:10.1158/1078-0432.CCR-07-1373

    Article  PubMed  CAS  Google Scholar 

  37. Kato M, Kitayama J, Kazama S, Nagawa H (2003) Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5:R144–R150. doi:10.1186/bcr627

    Article  PubMed  CAS  Google Scholar 

  38. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479. doi:10.1016/S0092-8674(04)00115-1

    Article  PubMed  CAS  Google Scholar 

  39. Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME (2005) GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 92:141–149. doi:10.1007/s10549-005-1483-4

    Article  PubMed  CAS  Google Scholar 

  40. Astrinidis A, Henske EP (2005) Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24:7475–7481. doi:10.1038/sj.onc.1209090

    Article  PubMed  CAS  Google Scholar 

  41. Massarweh S, Osborne CK, Jiang S, Wakeling AE, Rimawi M, Mohsin SK et al (2006) Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res 66:8266–8273. doi:10.1158/0008-5472.CAN-05-4045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant CA 18119 and a grant from The Breast Cancer Research Foundation (to B.S.K.), and by NIH Breast Cancer SPORE grant P50 CA58183 (to R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benita S. Katzenellenbogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, S., Schiff, R. & Katzenellenbogen, B.S. Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. Breast Cancer Res Treat 117, 243–251 (2009). https://doi.org/10.1007/s10549-008-0186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0186-z

Keywords

Navigation