Skip to main content

Advertisement

Log in

Immortalization and transformation of human mammary epithelial cells by a tumor-derived Myc mutant

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The Myc transcription factor is commonly dysregulated in many human cancers, including breast carcinomas. However, the precise role of Myc in the initiation and maintenance of malignancy is unclear. In this study we compared the ability of wild-type Myc (wt Myc) or Myc phosphorylation deficient mutants (T58A, S62A or T58A/S62A) to immortalize and transform human mammary epithelial cells (HMECs). All Myc constructs promoted cellular immortalization. As previously reported in other cells, the Myc T58A mutant tempered apoptotic responses and increased Myc protein stability in HMEC cells. More importantly, we now show that HMECs overexpressing the Myc T58A mutant acquire a unique cellular phenotype characterized by cell aggregation, detachment from the substrate and growth in liquid suspension. Coincident with these changes, the cells become anchorage-independent for growth in agarose. Previous studies have shown that wt Myc can collaborate with hTERT in inducing HMEC anchorage-independent growth. We have verified this observation and further shown that Myc T58A was a stronger facilitator of such co-transformation. Thus, our findings indicate that differences in Myc protein phosphorylation modulate its biological activity in human breast epithelial cells and specifically that the T58A mutation can facilitate both cellular immortalization and transformation. Finally, we used the isogenic cell lines generated in this study to identify a subset of genes whose expression is greatly altered during the transition from the immortal to the anchorage-independent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  2. Reddel RR (2000) The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21:477–484. doi:10.1093/carcin/21.3.477

    Article  PubMed  CAS  Google Scholar 

  3. Newbold RF (2002) The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis 17:539–550. doi:10.1093/mutage/17.6.539

    Article  PubMed  CAS  Google Scholar 

  4. Hammond SL, Ham RG, Stampfer MR (1984) Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81:5435–5439. doi:10.1073/pnas.81.17.5435

    Article  PubMed  CAS  Google Scholar 

  5. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17:199–205. doi:10.1038/sj.onc.1201919

    Article  PubMed  CAS  Google Scholar 

  6. Romanov SR, Kozakiewicz BK, Holst CR et al (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637. doi:10.1038/35054579

    Article  PubMed  CAS  Google Scholar 

  7. Garbe JC, Holst CR, Bassett E et al (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6:1927–1936

    PubMed  CAS  Google Scholar 

  8. Foster SA, Wong DJ, Barrett MT et al (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18:1793–1801

    PubMed  CAS  Google Scholar 

  9. Huschtscha LI, Noble JR, Neumann AA et al (1998) Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res 58:3508–3512

    PubMed  CAS  Google Scholar 

  10. Tlsty TD, Romanov SR, Kozakiewicz BK et al (2001) Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence. J Mammary Gland Biol Neoplasia 6:235–243. doi:10.1023/A:1011369026168

    Article  PubMed  CAS  Google Scholar 

  11. Yaswen P, Stampfer MR (2002) Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int J Biochem Cell Biol 34:1382–1394. doi:10.1016/S1357-2725(02)00047-X

    Article  PubMed  CAS  Google Scholar 

  12. Wazer DE, Liu XL, Chu Q et al (1995) Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc Natl Acad Sci USA 92:3687–3691. doi:10.1073/pnas.92.9.3687

    Article  PubMed  CAS  Google Scholar 

  13. Kiyono T, Foster SA, Koop JI et al (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88. doi:10.1038/23962

    Article  PubMed  CAS  Google Scholar 

  14. Nonet GH, Stampfer MR, Chin K et al (2001) The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res 61:1250–1254

    PubMed  CAS  Google Scholar 

  15. Dimri GP, Martinez JL, Jacobs JJ et al (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745

    PubMed  CAS  Google Scholar 

  16. Wang J, Xie LY, Allan S et al (1998) Myc activates telomerase. Genes Dev 12:1769–1774. doi:10.1101/gad.12.12.1769

    Article  PubMed  CAS  Google Scholar 

  17. Rao K, Alper O, Opheim KE et al (2006) Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells. Cancer Cell Int 6:15. doi:10.1186/1475-2867-6-15

    Article  PubMed  Google Scholar 

  18. Cowling VH, Cole MD (2007) E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene 26:3582–3586. doi:10.1038/sj.onc.1210132

    Article  PubMed  CAS  Google Scholar 

  19. Elenbaas B, Spirio L, Koerner F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65. doi:10.1101/gad.828901

    Article  PubMed  CAS  Google Scholar 

  20. Zhao JJ, Gjoerup OV, Subramanian RR et al (2003) Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3:483–495. doi:10.1016/S1535-6108(03)00088-6

    Article  PubMed  CAS  Google Scholar 

  21. Kendall SD, Linardic CM, Adam SJ et al (2005) A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65:9824–9828. doi:10.1158/0008-5472.CAN-05-1543

    Article  PubMed  CAS  Google Scholar 

  22. Duss S, Andre S, Nicoulaz AL et al (2007) An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res 9:R38. doi:10.1186/bcr1734

    Article  PubMed  Google Scholar 

  23. Ayyanan A, Civenni G, Ciarloni L et al (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 103:3799–3804. doi:10.1073/pnas.0600065103

    Article  PubMed  CAS  Google Scholar 

  24. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016. doi:10.1038/sj.onc.1202746

    Article  PubMed  CAS  Google Scholar 

  25. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645. doi:10.1038/nrm1703

    Article  PubMed  CAS  Google Scholar 

  26. Dang CV, O’Donnell KA, Zeller KI et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264. doi:10.1016/j.semcancer.2006.07.014

    Article  PubMed  CAS  Google Scholar 

  27. Kato GJ, Barrett J, Villa-Garcia M et al (1990) An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10:5914–5920

    PubMed  CAS  Google Scholar 

  28. Gupta S, Seth A, Davis RJ (1993) Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci USA 90:3216–3220. doi:10.1073/pnas.90.8.3216

    Article  PubMed  CAS  Google Scholar 

  29. Henriksson M, Bakardjiev A, Klein G et al (1993) Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 8:3199–3209

    PubMed  CAS  Google Scholar 

  30. Pulverer BJ, Fisher C, Vousden K et al (1994) Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9:59–70

    PubMed  CAS  Google Scholar 

  31. Bhatia K, Huppi K, Spangler G et al (1993) Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 5:56–61. doi:10.1038/ng0993-56

    Article  PubMed  CAS  Google Scholar 

  32. Albert T, Urlbauer B, Kohlhuber F et al (1994) Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 9:759–763

    PubMed  CAS  Google Scholar 

  33. Chang DW, Claassen GF, Hann SR et al (2000) The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 20:4309–4319. doi:10.1128/MCB.20.12.4309-4319.2000

    Article  PubMed  CAS  Google Scholar 

  34. Lutterbach B, Hann SR (1994) Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14:5510–5522

    PubMed  CAS  Google Scholar 

  35. Sears R, Leone G, DeGregori J et al (1999) Ras enhances Myc protein stability. Mol Cell 3:169–179. doi:10.1016/S1097-2765(00)80308-1

    Article  PubMed  CAS  Google Scholar 

  36. Sears R, Nuckolls F, Haura E et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14:2501–2514. doi:10.1101/gad.836800

    Article  PubMed  CAS  Google Scholar 

  37. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20:2423–2435. doi:10.1128/MCB.20.7.2423-2435.2000

    Article  PubMed  CAS  Google Scholar 

  38. Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18:717–726. doi:10.1093/emboj/18.3.717

    Article  PubMed  CAS  Google Scholar 

  39. Gregory MA, Qi Y, Hann SR (2003) Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278:51606–51612. doi:10.1074/jbc.M310722200

    Article  PubMed  CAS  Google Scholar 

  40. Conzen SD, Gottlob K, Kandel ES et al (2000) Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20:6008–6018. doi:10.1128/MCB.20.16.6008-6018.2000

    Article  PubMed  CAS  Google Scholar 

  41. Yeh E, Cunningham M, Arnold H et al (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6:308–318. doi:10.1038/ncb1110

    Article  PubMed  CAS  Google Scholar 

  42. Hemann MT, Bric A, Teruya-Feldstein J et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811. doi:10.1038/nature03845

    Article  PubMed  CAS  Google Scholar 

  43. Lee JW, Soung YH, Kim SY et al (2006) Mutational analysis of MYC in common epithelial cancers and acute leukemias. APMIS 114:436–439. doi:10.1111/j.1600-0463.2006.apm_383.x

    Article  PubMed  CAS  Google Scholar 

  44. Rodrik V, Gomes E, Hui L et al (2006) Myc stabilization in response to estrogen and phospholipase D in MCF-7 breast cancer cells. FEBS Lett 580:5647–5652. doi:10.1016/j.febslet.2006.09.013

    Article  PubMed  CAS  Google Scholar 

  45. Counter CM, Hahn WC, Wei W et al (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 95:14723–14728. doi:10.1073/pnas.95.25.14723

    Article  PubMed  CAS  Google Scholar 

  46. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–982, 984–986, 989–990

    PubMed  CAS  Google Scholar 

  47. Pear WS, Nolan GP, Scott ML et al (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396. doi:10.1073/pnas.90.18.8392

    Article  PubMed  CAS  Google Scholar 

  48. Disbrow GL, Sunitha I, Baker CC et al (2003) Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology 311:105–114. doi:10.1016/S0042-6822(03)00129-6

    Article  PubMed  CAS  Google Scholar 

  49. Disbrow GL, Baege AC, Kierpiec KA et al (2005) Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res 65:10854–10861. doi:10.1158/0008-5472.CAN-05-1216

    Article  PubMed  CAS  Google Scholar 

  50. Suprynowicz FA, Sparkowski J, Baege A et al (2000) E5 oncoprotein mutants activate phosphoinositide 3-kinase independently of platelet-derived growth factor receptor activation. J Biol Chem 275:5111–5119. doi:10.1074/jbc.275.7.5111

    Article  PubMed  CAS  Google Scholar 

  51. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. doi:10.1186/gb-2004-5-10-r80

    Article  PubMed  Google Scholar 

  52. Lee SW, Reimer CL, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397. doi:10.1038/sj.onc.1201661

    Article  PubMed  CAS  Google Scholar 

  53. Fiucci G, Ravid D, Reich R et al (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375. doi:10.1038/sj.onc.1205300

    Article  PubMed  CAS  Google Scholar 

  54. Gil J, Kerai P, Lleonart M et al (2005) Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res 65:2179–2185. doi:10.1158/0008-5472.CAN-03-4030

    Article  PubMed  CAS  Google Scholar 

  55. Cowling VH, D’Cruz CM, Chodosh LA et al (2007) c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol 27:5135–5146. doi:10.1128/MCB.02282-06

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Department of Defense Grant W81XWH-05-0259 (CT) and CA106400-03/5 from the NCI (RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schlegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibodeaux, C.A., Liu, X., Disbrow, G.L. et al. Immortalization and transformation of human mammary epithelial cells by a tumor-derived Myc mutant. Breast Cancer Res Treat 116, 281–294 (2009). https://doi.org/10.1007/s10549-008-0127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0127-x

Keywords

Navigation