Skip to main content

Advertisement

Log in

Columnar cell lesions, mammographic density and breast cancer risk

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Mammographic density is the third largest risk factor for ductal carcinoma in-situ (DCIS) and invasive breast cancer. However, the question of whether risk-mediating precursor histological changes, such as columnar cell lesions (CCLs), can be found in dense but non-malignant breast tissues has not been systematically addressed. We hypothesized that CCLs may be related to breast composition, in particular breast density, in non-tumour containing breast tissue. Patients and methods We examined randomly selected tissue samples obtained by bilateral subcutaneous mastectomy from a forensic autopsy series, where tissue composition was assessed, and in which there had been no selection of subjects or histological specimens for breast disease. We reviewed H&E slides for the presence of atypical and non-atypical CCLs and correlated with histological features measured using quantitative microscopy. Results CCLs were seen in 40 out of 236 cases (17%). The presence of CCLs was found to be associated with several measures of breast tissue composition, including radiographic density: high Faxitron Wolfe Density (P = 0.037), high density estimated by percentage non-adipose tissue area (P = 0.037), high percentage collagen (P = 9.2E−05) and high percentage glandular area (P = 2E−05). DCIS was identified in two atypical CCL cases. The extent of CCL was not associated with any of the examined variables. Conclusion Our study is the first to report a possible association between CCLs and breast tissue composition, including mammographic density. Our data suggest that prospective elucidation of the strength and nature of the clinicopathological correlation may lead to an enhanced understanding of mammographic density and evidence based management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

Atypical ductal hyperplasia

ALH:

Atypical lobular hyperplasia

BMI:

Body mass index

CCC:

Columnar cell change

CCH:

Columnar cell hyperplasia

CCL:

Columnar cell lesion

DCIS:

Ductal carcinoma in-situ

DIN1a, DIN1b:

Ductal intraepithelial neoplasia 1b, 1a

ER:

Estrogen receptor

MD:

Mammographic density

TDLU:

Terminal duct lobular unit

UDH:

Usual ductal hyperplasia

References

  1. Ingleby H, Gerson-Cohen J (1960) Comparative anatomy, pathology and roentgenology of the breast. University of Philadelphia Press, Philadelphia

    Google Scholar 

  2. Li T, Sun L, Miller N et al (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349. doi:10.1158/1055-9965.EPI-04-0490

    Article  PubMed  Google Scholar 

  3. Boyd NF, Dite GS, Stone J et al (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347:886–894. doi:10.1056/NEJMoa013390

    Article  PubMed  Google Scholar 

  4. von Schoultz B (2004) The effects of tibolone and oestrogen-based HT on breast cell proliferation and mammographic density. Maturitas 49:S16–S21. doi:10.1016/j.maturitas.2004.06.011

    Article  CAS  Google Scholar 

  5. Topal NB, Ayhan S, Topal U et al (2006) Effects of hormone replacement therapy regimens on mammographic breast density: the role of progestins. J Obstet Gynaecol Res 32:305–308. doi:10.1111/j.1447-0756.2006.00402.x

    Article  PubMed  CAS  Google Scholar 

  6. van Gils CH, Hendriks JH, Otten JD et al (2000) Parity and mammographic breast density in relation to breast cancer risk: indication of interaction. Eur J Cancer Prev 9:105–111. doi:10.1097/00008469-200004000-00006

    Article  PubMed  Google Scholar 

  7. Boyd NF, Lockwood GA, Byng JW et al (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144

    PubMed  CAS  Google Scholar 

  8. Arthur JE, Ellis IO, Flowers C et al (1990) The relationship of “high risk” mammographic patterns to histological risk factors for development of cancer in the human breast. Br J Radiol 63:845–849

    Article  PubMed  CAS  Google Scholar 

  9. Urbanski S, Jensen HM, Cooke G et al (1988) The association of histological and radiological indicators of breast cancer risk. Br J Cancer 58:474–479

    PubMed  CAS  Google Scholar 

  10. Foote FW, Stewart FW (1945) Comparative studies of cancerous versus noncancerous breasts. Ann Surg 121:197–222

    Article  PubMed  CAS  Google Scholar 

  11. Lanyi M, Citoler P (1981) The differential diagnosis of microcalcification. Micro-cyst (blunt duct) adenosis (author’s transl). Rofo 134:225–231

    Google Scholar 

  12. Azzopardi JG, Ahmed A, Millis RR (1979) Problems in breast pathology. Major Probl Pathol 11:i–xvi, 1–466

    PubMed  CAS  Google Scholar 

  13. Tavassoli FA (2001) Ductal intraepithelial neoplasia of the breast. Virchows Arch 438:221–227. doi:10.1007/s004280100394

    Article  PubMed  CAS  Google Scholar 

  14. Eusebi V, Foschini MP, Cook MG et al (1989) Long-term follow-up of in situ carcinoma of the breast with special emphasis on clinging carcinoma. Semin Diagn Pathol 6:165–173

    PubMed  CAS  Google Scholar 

  15. WHO (2003) World health organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon, France

    Google Scholar 

  16. Rosen PP (2001) Rosen’s breast pathology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  17. McLaren BK, Gobbi H, Schuyler PA et al (2005) Immunohistochemical expression of estrogen receptor in enlarged lobular units with columnar alteration in benign breast biopsies: a nested case-control study. Am J Surg Pathol 29:105–108. doi:10.1097/01.pas.0000146013.76881.d9

    Article  PubMed  Google Scholar 

  18. Luna-More S, Weil B, Bautista D et al (2004) Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues. A metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol 19:457–463

    PubMed  CAS  Google Scholar 

  19. Goldstein NS, O’Malley BA (1997) Cancerization of small ectatic ducts of the breast by ductal carcinoma in situ cells with apocrine snouts: a lesion associated with tubular carcinoma. Am J Clin Pathol 107:561–566

    PubMed  CAS  Google Scholar 

  20. Gopalan A, Hoda SA (2005) Columnar cell hyperplasia and lobular carcinoma in situ coexisting in the same duct. Breast J 11:210. doi:10.1111/j.1075-122X.2005.21459.x

    Article  PubMed  Google Scholar 

  21. Rosen PP (1999) Columnar cell hyperplasia is associated with lobular carcinoma in situ and tubular carcinoma. Am J Surg Pathol 23:1561. doi:10.1097/00000478-199912000-00017

    Article  PubMed  CAS  Google Scholar 

  22. Sahoo S, Recant WM (2005) Triad of columnar cell alteration, lobular carcinoma in situ, and tubular carcinoma of the breast. Breast J 11:140–142. doi:10.1111/j.1075-122X.2005.21616.x

    Article  PubMed  Google Scholar 

  23. Simpson PT, Gale T, Reis-Filho JS et al (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746. doi:10.1097/01.pas.0000157295.93914.3b

    Article  PubMed  Google Scholar 

  24. Sewell CW (2004) Pathology of high-risk breast lesions and ductal carcinoma in situ. Radiol Clin North Am 42:821–830. doi:10.1016/j.rcl.2004.03.013

    Article  PubMed  Google Scholar 

  25. Feeley L, Quinn CM (2008) Columnar cell lesions of the breast. Histopathology 52:11–19

    PubMed  CAS  Google Scholar 

  26. Pinder SE, Reis-Filho JS (2007) Non-operative breast pathology: columnar cell lesions. J Clin Pathol 60:1307–1312. doi:10.1136/jcp.2006.040634

    Article  PubMed  CAS  Google Scholar 

  27. Kim MJ, Kim EK, Oh KK et al (2006) Columnar cell lesions of the breast: mammographic and US features. Eur J Radiol 60:264–269. doi:10.1016/j.ejrad.2006.06.013

    Article  PubMed  Google Scholar 

  28. Bartow SA, Mettler RT, Black WC (1997) Correlations between radiographic patterns and morphology of the female breast. Rad Patterns Morphol 13:263–275

    Google Scholar 

  29. Hart BL, Steinbock RT, Mettler FA Jr et al (1989) Age and race related changes in mammographic parenchymal patterns. Cancer 63:2537–2539. doi :10.1002/1097-0142(19890615)63:12<2537::AID-CNCR2820631230>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  30. Bartow SA, Pathak DR, Mettler FA et al (1995) Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol 142:813–819

    PubMed  CAS  Google Scholar 

  31. Bartow SA, Pathak DR, Black WC et al (1987) Prevalence of benign, atypical, and malignant breast lesions in populations at different risk for breast cancer. A forensic autopsy study. Cancer 60:2751–2760. doi :10.1002/1097-0142(19871201)60:11<2751::AID-CNCR2820601127>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  32. Schnitt SJ, Vincent-Salomon A (2003) Columnar cell lesions of the breast. Adv Anat Pathol 10:113–124. doi:10.1097/00125480-200305000-00001

    Article  PubMed  Google Scholar 

  33. Boyd NF, Martin LJ, Yaffe MJ et al (2006) Mammographic density: a hormonally responsive risk factor for breast cancer. J Br Menopause Soc 12:186–193. doi:10.1258/136218006779160436

    Article  PubMed  Google Scholar 

  34. Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236. doi:10.1056/NEJMoa062790

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell G, Antoniou AC, Warren R et al (2006) Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66:1866–1872. doi:10.1158/0008-5472.CAN-05-3368

    Article  PubMed  CAS  Google Scholar 

  36. Falkenberry SS, Legare RD (2002) Risk factors for breast cancer. Obstet Gynecol Clin North Am 29:159–172. doi:10.1016/S0889-8545(03)00059-7

    Article  PubMed  Google Scholar 

  37. Hulka BS, Moorman PG (2001) Breast cancer: hormones and other risk factors. Maturitas 38:103–113. discussion 113–106. doi:10.1016/S0378-5122(00)00196-1

    Article  PubMed  CAS  Google Scholar 

  38. Martin AM, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 92:1126–1135. doi:10.1093/jnci/92.14.1126

    Article  PubMed  CAS  Google Scholar 

  39. Laden F, Hunter DJ (1998) Environmental risk factors and female breast cancer. Annu Rev Public Health 19:101–123. doi:10.1146/annurev.publhealth.19.1.101

    Article  PubMed  CAS  Google Scholar 

  40. Bartow SA, Pathak DR, Mettler FA (1990) Radiographic microcalcification and parenchymal patterns as indicators of histologic “high-risk” benign breast disease. Cancer 66:1721–1725. doi :10.1002/1097-0142(19901015)66:8<1721::AID-CNCR2820660812>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  41. Wellings SR, Wolfe JN (1978) Correlative studies of the histological and radiographic appearance of the breast parenchyma. Radiology 129:299–306

    PubMed  CAS  Google Scholar 

  42. Bright RA, Morrison AS, Brisson J et al (1988) Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer 61:266–271. doi :10.1002/1097-0142(19880115)61:2<266::AID-CNCR2820610212>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  43. Bland KI, Kuhns JG, Buchanan JB et al (1982) A clinicopathologic correlation of mammographic parenchymal patterns and associated risk factors for human mammary carcinoma. Ann Surg 195:582–594. doi:10.1097/00000658-198205000-00007

    Article  PubMed  CAS  Google Scholar 

  44. Boyd NF, Jensen HM, Cooke G et al (1992) Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 84:1170–1179. doi:10.1093/jnci/84.15.1170

    Article  PubMed  CAS  Google Scholar 

  45. Boyd NF, Jensen HM, Cooke G et al (2000) Mammographic densities and the prevalence and incidence of histological types of benign breast disease. Reference pathologists of the canadian national breast screening study. Eur J Cancer Prev 9:15–24. doi:10.1097/00008469-200002000-00003

    Article  PubMed  CAS  Google Scholar 

  46. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2:133–140. doi:10.1016/S1470-2045(00)00254-0

    Article  PubMed  CAS  Google Scholar 

  47. Russo J, Hu YF, Yang X (2000) Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 27:17–37

    PubMed  CAS  Google Scholar 

  48. Butler LM, Potischman NA, Newman B (2000) Menstrual risk factors and early-onset breast cancer. Cancer Causes Control 11:451–458. doi:10.1023/A:1008956524669

    Article  PubMed  CAS  Google Scholar 

  49. Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8:327–343

    PubMed  CAS  Google Scholar 

  50. Tlsty TD (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol 10:647–653. doi:10.1016/S0955-0674(98)80041-0

    Article  PubMed  CAS  Google Scholar 

  51. Guo YP, Martin LJ, Hanna W et al (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10:243–248

    PubMed  CAS  Google Scholar 

  52. Boyd NF, Stone J, Martin LJ et al (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87:876–882. doi:10.1038/sj.bjc.6600537

    Article  PubMed  CAS  Google Scholar 

  53. Hankinson SE, Willett WC, Michaud DS (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91:629–634. doi:10.1093/jnci/91.7.629

    Article  PubMed  CAS  Google Scholar 

  54. Hankinson SE, Willett WC, Colditz GA et al (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396. doi:10.1016/S0140-6736(97)10384-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the generous assistance of Dr. Sue Bartow in providing access to the material on which this study was based. S. Aparicio is supported by Canada Research Chair in Molecular Oncology. G. Turashvili is supported by the CIHR Training Program for Clinician Scientists in Molecular Oncologic Pathology (STP-53912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Aparicio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turashvili, G., McKinney, S., Martin, L. et al. Columnar cell lesions, mammographic density and breast cancer risk. Breast Cancer Res Treat 115, 561–571 (2009). https://doi.org/10.1007/s10549-008-0099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0099-x

Keywords

Navigation