Skip to main content

Advertisement

Log in

Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo)

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Altered hedgehog signaling is implicated in the development of approximately 20–25% of all cancers, especially those of soft tissues. Genetic evidence in mice as well as immunolocalization studies in human breast cancer specimens suggest that deregulated hedgehog signaling may contribute to breast cancer development. Indeed, two recent studies demonstrated that anchorage-dependent growth of some human breast cancer cell lines is impaired by cyclopamine, a potent hedgehog signaling antagonist targeting the Smoothened (SMO) protein. However, specificity of cyclopamine at the dosage required for growth inhibition (≥10 μM) remained an open question. In this paper we demonstrate that hedgehog signaling antagonists, including cyclopamine, and a second compound, CUR0199691, can inhibit growth of estrogen receptor (ER)-positive and ER-negative tumorigenic breast cancer cells at elevated doses. However, our results indicate that, for most breast cancer cell lines, growth inhibition by these compounds can be independent of detectable Smo gene expression. Rather, our results suggest that cyclopamine and CUR0199691 have unique secondary molecular targets at the dosages required for growth inhibition that are unrelated to hedgehog signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9:165–181. doi:10.1023/B:JOMG.0000037160.24731.35

    Article  PubMed  Google Scholar 

  2. Hooper JE, Scott MP (2005) Communicating with hedgehogs. Nat Rev Mol Cell Biol 6:306–317. doi:10.1038/nrm1622

    Article  PubMed  CAS  Google Scholar 

  3. Nusse R (2003) Wnts and hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130:5297–5305. doi:10.1242/dev.00821

    Article  PubMed  CAS  Google Scholar 

  4. Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet 123A:5–28. doi:10.1002/ajmg.a.20495

    Article  PubMed  Google Scholar 

  5. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071. doi:10.1158/0008-5472.CAN-06-0054

    Article  PubMed  CAS  Google Scholar 

  6. Briscoe J, Therond P (2005) Hedgehog signaling: from the Drosophila cuticle to anti-cancer drugs. Dev Cell 8:143–151. doi:10.1016/j.devcel.2005.01.008

    Article  PubMed  CAS  Google Scholar 

  7. Chang-Claude J, Dunning A, Schnitzbauer U et al (2003) The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk. Int J Cancer 103:779–783. doi:10.1002/ijc.10889

    Article  PubMed  CAS  Google Scholar 

  8. Naylor TL, Greshock J, Wang Y et al (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:R1186–R1198. doi:10.1186/bcr1356

    Article  PubMed  CAS  Google Scholar 

  9. Kubo M, Nakamura M, Tasaki A et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074. doi:10.1158/0008-5472.CAN-04-0416

    Article  PubMed  CAS  Google Scholar 

  10. Mukherjee S, Frolova N, Sadlonova A et al (2006) Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5:674–683

    Article  PubMed  CAS  Google Scholar 

  11. Wolf I, Bose S, Desmond JC et al (2007) Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105:139–155

    Article  PubMed  CAS  Google Scholar 

  12. Moraes RC, Zhang X, Harrington N et al (2007) Constitutive activation of smoothened (Smo) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 134:1231–1242

    Article  PubMed  CAS  Google Scholar 

  13. Xie J, Johnson RL, Zhang X et al (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57:2369–2372

    PubMed  CAS  Google Scholar 

  14. Evangelista M, Tian H, de Sauvage FJ (2006) The hedgehog signaling pathway in cancer. Clin Cancer Res 12:5924–5928. doi:10.1158/1078-0432.CCR-06-1736

    Article  PubMed  CAS  Google Scholar 

  15. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103:12607–12612. doi:10.1073/pnas.0600880103

    Article  PubMed  CAS  Google Scholar 

  16. Barnes EA, Kong M, Ollendorff V, Donoghue DJ (2001) Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J 20:2214–2223. doi:10.1093/emboj/20.9.2214

    Article  PubMed  CAS  Google Scholar 

  17. Meloni AR, Fralish GB, Kelly P et al (2006) Smoothened signal transduction is promoted by g protein-coupled receptor kinase 2. Mol Cell Biol 26:7550–7560. doi:10.1128/MCB.00546-06

    Article  PubMed  CAS  Google Scholar 

  18. Chen W, Ren XR, Nelson CD et al (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306:2257–2260. doi:10.1126/science.1104135

    Article  PubMed  CAS  Google Scholar 

  19. Frank-Kamenetsky M, Zhang XM, Bottega S et al (2002) Small-molecule modulators of hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 1:10. doi:10.1186/1475-4924-1-10

    Article  PubMed  Google Scholar 

  20. Williams JA, Guicherit OM, Zaharian BI et al (2003) Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100:4616–4621. doi:10.1073/pnas.0732813100

    Article  PubMed  CAS  Google Scholar 

  21. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99:14071–14076. doi:10.1073/pnas.182542899

    Article  PubMed  CAS  Google Scholar 

  22. Incardona JP, Gaffield W, Kapur RP, Roelink H (1998) The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125:3553–3562

    PubMed  CAS  Google Scholar 

  23. Gabay L, Lowell S, Rubin LL, Anderson DJ (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40:485–499. doi:10.1016/S0896-6273(03)00637-8

    Article  PubMed  CAS  Google Scholar 

  24. Levitt RJ, Zhao Y, Blouin MJ, Pollak M (2007) The hedgehog pathway inhibitor cyclopamine increases levels of p27, and decreases both expression of IGF-II and activation of Akt in PC-3 prostate cancer cells. Cancer Lett 255:300–306

    Article  PubMed  CAS  Google Scholar 

  25. Masdeu C, Faure H, Coulombe J et al (2006) Identification and characterization of hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem Biophys Res Commun 349:471–479. doi:10.1016/j.bbrc.2006.07.216

    Article  PubMed  CAS  Google Scholar 

  26. Mimeault M, Moore E, Moniaux N et al (2005) Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 118:1022–1031

    Article  CAS  Google Scholar 

  27. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748. doi:10.1101/gad.1025302

    Article  PubMed  CAS  Google Scholar 

  28. Berman DM, Karhadkar SS, Hallahan AR et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561. doi:10.1126/science.1073733

    Article  PubMed  CAS  Google Scholar 

  29. Tabs S, Avci O (2004) Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 14:96–102

    PubMed  Google Scholar 

  30. Sanchez P, Ruiz i Altaba A (2005) In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev 122:223–230. doi:10.1016/j.mod.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  31. Athar M, Li C, Tang X et al (2004) Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 64:7545–7552. doi:10.1158/0008-5472.CAN-04-1393

    Article  PubMed  CAS  Google Scholar 

  32. Romer JT, Kimura H, Magdaleno S et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240. doi:10.1016/j.ccr.2004.08.019

    Article  PubMed  CAS  Google Scholar 

  33. Sasai K, Romer JT, Lee Y et al (2006) Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res 66:4215–4222. doi:10.1158/0008-5472.CAN-05-4505

    Article  PubMed  CAS  Google Scholar 

  34. Lewis DE, Ng Tang DS, Wang X, Kozinetz C (1999) Costimulatory pathways mediate monocyte-dependent lymphocyte apoptosis in HIV. Clin Immunol 90:302–312. doi:10.1006/clim.1998.4663

    Article  PubMed  CAS  Google Scholar 

  35. Incardona JP, Roelink H (2000) The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol Life Sci 57:1709–1719. doi:10.1007/PL00000653

    Article  PubMed  CAS  Google Scholar 

  36. Incardona JP, Gaffield W, Lange Y et al (2000) Cyclopamine inhibition of Sonic hedgehog signal transduction is not mediated through effects on cholesterol transport. Dev Biol 224:440–452. doi:10.1006/dbio.2000.9775

    Article  PubMed  CAS  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  38. Chiang C, Swan RZ, Grachtchouk M et al (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205:1–9. doi:10.1006/dbio.1998.9103

    Article  PubMed  CAS  Google Scholar 

  39. Detmer K, Walker AN, Jenkins TM, Steele TA, Dannawi H (2000) Erythroid differentiation in vitro is blocked by cyclopamine, an inhibitor of hedgehog signaling. Blood Cells Mol Dis 26:360–372. doi:10.1006/bcmd.2000.0318

    Article  PubMed  CAS  Google Scholar 

  40. Taipale J, Chen JK, Cooper MK et al (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009. doi:10.1038/35023008

    Article  PubMed  CAS  Google Scholar 

  41. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C (2004) Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer 110:831–837. doi:10.1002/ijc.20227

    Article  PubMed  CAS  Google Scholar 

  42. Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W (2007) Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J Urol 177:1179–1185. doi:10.1016/j.juro.2006.10.032

    Article  PubMed  CAS  Google Scholar 

  43. Mimeault M, Moore E, Moniaux N et al (2006) Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 118:1022–1031. doi:10.1002/ijc.21440

    Article  PubMed  CAS  Google Scholar 

  44. Lewis MT, Ross S, Strickland PA et al (1999) Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 126:5181–5193

    PubMed  CAS  Google Scholar 

  45. Lewis MT, Ross S, Strickland PA et al (2001) The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 238:133–144. doi:10.1006/dbio.2001.0410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a Department of Defense IDEA Award (DAMD17-00-1-0477), a SPORE Developmental Project Grant (P50 CA50183), and a National Institutes of Health Grant (P01- CA30195). The authors thank Drs. Frederick de Sauvage (Genentech Inc. South San Francisco, CA) and Stephen Gould (Curis Inc. Cambridge MA) for providing CUR0199691 and recombinant SHH-N ligand for this study, as well as for critical evaluation of the data. We thank Dr. Matthew Herynk for advice regarding cell culture, and Dr. Andra Frost for helpful discussions, provision of a Smo primer/probe set used previously in her laboratory, and for critical evaluation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lewis.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Harrington, N., Moraes, R.C. et al. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo) . Breast Cancer Res Treat 115, 505–521 (2009). https://doi.org/10.1007/s10549-008-0093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0093-3

Keywords

Navigation