Skip to main content

Advertisement

Log in

Molecular profiles of progesterone receptor loss in human breast tumors

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Patient prognosis and response to endocrine therapy in breast cancer correlate with protein expression of both estrogen receptor (ER) and progesterone receptor (PR), with poorer outcome in patients with ER+/PR− compared to ER+/PR+ tumors. Methods To better understand the underlying biology of ER+/PR− tumors, we examined RNA expression (n > 1000 tumors) and DNA copy number profiles from five previously published studies of human breast cancers with clinically assigned hormone receptor status (ER+/PR+, ER+/PR−, and ER−/PR−). Results We identified an expression “signature” of genes with either elevated or diminished RNA levels specifically in ER+/PR+ compared to ER−/PR− and ER+/PR− tumors. We similarly identified a gene signature specific to ER−/PR− tumors. ER+/PR− tumors, on the other hand, were a mixture of three different subtypes: tumors manifesting the ER+/PR+ signature, tumors manifesting the ER−/PR− signature, and tumors not associating with ER+/PR+ or ER−/PR− tumors (which we considered “true” ER+/PR−). In analyses of both tamoxifen-treated and untreated patients, ER+/PR− breast cancers defined by RNA profiling were associated with poor patient outcome, worse than those with pure ER+/PR+ patterns; these differences were not observed when using clinical assays to assign ER and PR status. ER+/PR− tumors also showed twice as many DNA copy number gains or losses compared to ER+/PR+ and ER−PR− tumors. Targets of transcriptional up-regulation by specific oncogenic pathways, including PI3 K/Akt/mTOR, were enriched in both ER+/PR− and ER−/PR− compared to ER+/PR+ tumors. Conclusion ER+/PR− tumors as defined by RNA profiling represent a distinct subset of breast cancer with aggressive features and poor outcome, despite being clinically ER+. Multigene assays derived from our gene signatures could conceivably provide an improved clinical assay for inferring PR status for prognostic and therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptor alpha

PR:

Progesterone receptor

IHC:

Immunohistochemistry

CNA:

Copy number alteration

References

  1. Elledge RM, Fuqua SA (2000) Estrogen and progesterone receptors. In: Harris J, Lippman ME, Morrow M, Osborne C (eds) Diseases of the Breast. Lippincott, Williams and Wilkins, Philadelphia, pp 471–488

  2. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23(30):7721–7735

    Article  PubMed  CAS  Google Scholar 

  3. Osborne C (1998) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51(3):227–238

    Article  PubMed  CAS  Google Scholar 

  4. Allred DC, Brown P, Medina D (2004) The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res 6:240–245

    Article  PubMed  CAS  Google Scholar 

  5. Poole AJ, Li Y, Kim Y, Lin S-CJ, Lee W-H, Lee EYHP (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470

    Article  PubMed  CAS  Google Scholar 

  6. McGuire W (1978) Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin Oncol 5(4):428–433

    PubMed  CAS  Google Scholar 

  7. Horwitz K, McGuire W (1978) Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J Biol Chem 253(7):2223–2228

    PubMed  CAS  Google Scholar 

  8. Horwitz K, Koseki Y, McGuire W (1978) Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. Endocrinology 103(5):1742–1751

    Article  PubMed  CAS  Google Scholar 

  9. Bardou V-J, Arpino G, Elledge RM, Osborne CK, Clark GM (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21(10):1973–1979

    Article  PubMed  CAS  Google Scholar 

  10. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618

    Article  PubMed  CAS  Google Scholar 

  11. Stendahl M, Ryden L, Nordenskjold B, Jonsson PE, Landberg G, Jirstrom K (2006) High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. Clin Cancer Res 12(15):4614–4618

    Article  PubMed  CAS  Google Scholar 

  12. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97(17):1254–1261

    Article  PubMed  CAS  Google Scholar 

  13. Tovey S, Dunne B, Witton CJ, Forsyth A, Cooke TG, Bartlett JMS (2005) Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res 11(13):4835–4842

    Article  PubMed  CAS  Google Scholar 

  14. Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, Carter RD, Rivkin SE, Borst JR, Belt RJ (1992) Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol 10(8):1284–1291

    PubMed  CAS  Google Scholar 

  15. Osborne CK, Yochmowitz MG, Knight WA, McGuire WL (1980) The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46(12 Suppl):2884–2888

    Article  PubMed  CAS  Google Scholar 

  16. Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C, Cuzick J, Houghton J, Williams N, Mallon E et al (2008) Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER–2) status with recurrence in the arimidex, tamoxifen, alone or in combination trial. J Clin Oncol 26(7):1059–1065

    Article  PubMed  CAS  Google Scholar 

  17. Viale G, Regan M, Maiorano E, Mastropasqua M, Dell’Orto P, Rasmussen B, Raffoul J, Neven P, Orosz Z, Braye S et al (2007) Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol 25(25):3846–3852

    Article  PubMed  Google Scholar 

  18. Early Breast Cancer Trialists’ Collaborative Group (1992) Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31, 000 recurrences and 24, 000 deaths among 75, 000 women. Lancet 339(8785):71–85

    Google Scholar 

  19. Balleine RL, Earl MJ, Greenberg ML, Clarke CL (1999) Absence of progesterone receptor associated with secondary breast cancer in postmenopausal women. Br J Cancer 79(9–10):1564–1571

    Article  PubMed  CAS  Google Scholar 

  20. Bamberger AM, Milde-Langosch K, Schulte HM, Loning T (2000) Progesterone receptor isoforms, PR-B and PR-A, in breast cancer: correlations with clinicopathologic tumor parameters and expression of AP–1 factors. Horm Res 54(1):32–37

    Article  PubMed  CAS  Google Scholar 

  21. Dowsett M, Harper-Wynne C, Boeddinghaus I, Salter J, Hills M, Dixon M, Ebbs S, Gui G, Sacks N, Smith I (2001) HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res 61(23):8452–8458

    PubMed  CAS  Google Scholar 

  22. Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, Lee AV (2003) Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 17(4):575–588

    Article  PubMed  CAS  Google Scholar 

  23. Lapidus RG, Nass SJ, Davidson NE (1998) The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol Neoplasia 3:85–94

    Article  PubMed  CAS  Google Scholar 

  24. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  25. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  PubMed  CAS  Google Scholar 

  26. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo W-L, Lapuk A, Neve RM, Qian Z, Ryder T et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    Article  PubMed  CAS  Google Scholar 

  27. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe J-P, Tong F et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed  CAS  Google Scholar 

  28. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  29. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  CAS  Google Scholar 

  30. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  31. Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, Cragun J, Cottrill H, Kelley MJ, Petersen R et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12(11):1294–1300

    Article  PubMed  CAS  Google Scholar 

  32. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi M-B, Harpole D, Lancaster JM, Berchuck A et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357

    Article  PubMed  CAS  Google Scholar 

  33. Ma X-J, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616

    Article  PubMed  CAS  Google Scholar 

  34. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369

    Article  PubMed  CAS  Google Scholar 

  35. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–13555

    Article  PubMed  CAS  Google Scholar 

  36. Hoadley K, Weigman V, Fan C, Sawyer L, He X, Troester M, Sartor C, Rieger-House T, Bernard P, Carey L et al (2007) EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 8(258)

  37. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J, Foekens JA et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246

    Article  PubMed  CAS  Google Scholar 

  38. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  39. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  PubMed  CAS  Google Scholar 

  40. Herschkowitz J, Simin K, Weigman V, Mikaelian I, Usary J, Hu Z, Rasmussen K, Jones L, Assefnia S, Chandrasekharan S et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol R76.16

  41. Sotiriou C, Neo S-Y, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398

    Article  PubMed  CAS  Google Scholar 

  42. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

    Article  PubMed  CAS  Google Scholar 

  43. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG DW, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  PubMed  CAS  Google Scholar 

  44. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  45. Gross GE, Clark GM, Chamness GC, McGuire WL (1984) Multiple progesterone receptor assays in human breast cancer. Cancer Res 44(2):836–840

    PubMed  CAS  Google Scholar 

  46. Lehmann U, Kreipe H (2001) Real-Time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25(4):409–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants P30 CA125123, P50 CA58183, and 5P01 CA30195-25, and the Dan L. Duncan Cancer Center at Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad J. Creighton.

Additional information

Adrian V. Lee and Rachel Schiff contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. For the Wang, Miller, and van de Vijver datasets, profiles used in the analysis, along with biochemical assay or IHC values. The complete list of genes in the ER+/PR+ and ER−/PR− signatures.

MOESM1 (PDF 964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creighton, C.J., Kent Osborne, C., van de Vijver, M.J. et al. Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat 114, 287–299 (2009). https://doi.org/10.1007/s10549-008-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0017-2

Keywords

Navigation