Skip to main content

Advertisement

Log in

Towards an optimized platform for the detection, enrichment, and semi-quantitation circulating tumor cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Metastasis describes the process of migration of a frequently clinically occult circulating tumor cell (CTC) from the primary lesion to a new location and the subsequent formation of an overt growth. We and others have shown that the detection and quantitation of these cells has significant prognostic value, however there still remains no consensus as to the optimal methods to achieve this. The work described herein therefore considered various techniques, from storage and sample processing to data acquisition and analysis, to find an optimal combination of methods for an effective and practical platform for the detection of CTCs in peripheral blood. A dual-antigen epithelial cell enrichment procedure followed by a multi-marker QPCR analysis demonstrated the highest sensitivity and specificity, with the ability to detect as few as 10 tumor cells from a background of 106 peripheral blood mononuclear cells. Using these techniques in conjunction with a quadratic linear discriminant analysis (QDA) resulted in a platform able to generate this data and then combine it a single score for each patient, in which positivity reflected tumor cell presence, and negativity represented tumor cell absence. This assay was able to correctly determine tumor cell presence or absence in 100% of healthy controls and 84% of metastatic patients in a validation cohort of 39 individuals. This platform represents a highly sensitive and specific assay which could augment current routine assays for CTCs in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weigelt B, Bosma AJ, Hart AA, Rodenhuis S, van’t Veer LJ (2003) Marker genes for circulating tumour cells predict survival in metastasized breast cancer patients. Br J Cancer 88:1091–1094

    Article  PubMed  CAS  Google Scholar 

  2. Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland JM, Naume B (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118:2013–2019

    Article  PubMed  CAS  Google Scholar 

  3. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  PubMed  CAS  Google Scholar 

  4. Lyman GH, Giuliano AE, Somerfield MR, Benson AB III, Bodurka DC, Burstein HJ, Cochran AJ, Cody HS III, Edge SB, Galper S, Hayman JA, Kim TY, Perkins CL, Podoloff DA, Sivasubramaniam VH, Turner RR, Wahl R, Weaver DL, Wolff AC, Winer EP (2005) American society of clinical oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 23:7703–7720

    Article  PubMed  Google Scholar 

  5. Borgen E, Naume B, Nesland JM, Nowels KW, Pavlak N, Ravkin I, Goldbard S (2001) Use of automated microscopy for the detection of disseminated tumor cells in bone marrow samples. Cytometry 46:215–221

    Article  PubMed  CAS  Google Scholar 

  6. Gilbey AM, Burnett D, Coleman RE, Holen I (2004) The detection of circulating breast cancer cells in blood. J Clin Pathol 57:903–911

    Article  PubMed  CAS  Google Scholar 

  7. Benoy IH, Elst H, Philips M, Wuyts H, Van Dam P, Scharpe S, Van Marck E, Vermeulen PB, Dirix LY (2006) Prognostic significance of disseminated tumor cells as detected by quantitative real-time reverse-transcriptase polymerase chain reaction in patients with breast cancer. Clin Breast Cancer 7:146–152

    Article  PubMed  CAS  Google Scholar 

  8. Benoy IH, Elst H, Philips M, Wuyts H, Van Dam P, Scharpe S, Van Marck E, Vermeulen PB, Dirix LY (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94:672–680

    PubMed  CAS  Google Scholar 

  9. Ji XQ, Sato H, Tanaka H, Konishi Y, Fujimoto T, Takahashi O, Tanaka T (2006) Real-time quantitative RT-PCR detection of disseminated endometrial tumor cells in peripheral blood and lymph nodes using the LightCycler System. Gynecol Oncol 100:355–360

    Article  PubMed  CAS  Google Scholar 

  10. Lankiewicz S, Rivero BG, Bocher O (2006) Quantitative real-time RT-PCR of disseminated tumor cells in combination with immunomagnetic cell enrichment. Mol Biotechnol 34:15–27

    Article  PubMed  CAS  Google Scholar 

  11. Varangot M, Barrios E, Sonora C, Aizen B, Pressa C, Estrugo R, Lavigna R, Muse I, Osinaga E, Berois N (2005) Clinical evaluation of a panel of mRNA markers in the detection of disseminated tumor cells in patients with operable breast cancer. Oncol Rep 14:537–545

    PubMed  CAS  Google Scholar 

  12. Weigelt B, Verduijn P, Bosma AJ, Rutgers EJ, Peterse HL, van’t Veer LJ (2004) Detection of metastases in sentinel lymph nodes of breast cancer patients by multiple mRNA markers. Br J Cancer 90:1531–1537

    Article  PubMed  CAS  Google Scholar 

  13. Bieche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R, Vidaud M (1999) Quantitation of myc gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res 59:2759–2765

    PubMed  CAS  Google Scholar 

  14. Radmacher MD, McShane LM, Simon R (2002) A paradigm for class prediction using gene expression profiles. J Comput Biol 9:505–511

    Article  PubMed  CAS  Google Scholar 

  15. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  CAS  Google Scholar 

  16. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572

    Article  PubMed  CAS  Google Scholar 

  17. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New York

    Google Scholar 

  18. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100:9991–9996

    Article  PubMed  CAS  Google Scholar 

  19. Helgason HH, Molloy TJ, Bosma AJ, Rodenhuis S, van’t Veer LJ. An improved platform for circulating tumour detection in patients with primary breast cancer. Manuscript submitted

  20. Visvader JE, Lindeman GJ (2006) Mammary stem cells and mammopoiesis. Cancer Res 66:9798–9801

    Article  PubMed  CAS  Google Scholar 

  21. Benoy IH, Elst H, Van Dam P, Scharpe S, Van Marck E, Vermeulen PB, Dirix LY (2006) Detection of circulating tumour cells in blood by quantitative real-time RT-PCR: effect of pre-analytical time. Clin Chem Lab Med 44:1082–1087

    Article  PubMed  CAS  Google Scholar 

  22. Aledo JC, Segura JA, Barbero LG, Marquez J (1999) Upregulation of glyceraldehyde-3-phosphate dehydrogenase mRNA in the spleen of tumor-bearing mice. Biochimie 81:1109–1113

    Article  PubMed  CAS  Google Scholar 

  23. Hatayama T, Tsujioka K, Wakatsuki T, Kitamura T, Imahara H (1992) Effects of low culture temperature on the induction of hsp70 mRNA and the accumulation of hsp70 and hsp105 in mouse fm3a cells. J Biochem (Tokyo) 111:484–490

    CAS  Google Scholar 

  24. Grubbs EG, Abdel-Wahab Z, Tyler DS, Pruitt SK (2006) Utilizing quantitative polymerase chain reaction to evaluate prostate stem cell antigen as a tumor marker in pancreatic cancer. Ann Surg Oncol 13:1645–1654

    Article  PubMed  Google Scholar 

  25. Parr C, Jiang WG (2003) Quantitative analysis of lymphangiogenic markers in human colorectal cancer. Int J Oncol 23:533–539

    PubMed  CAS  Google Scholar 

  26. Schuster R, Max N, Mann B, Heufelder K, Thilo F, Grone J, Rokos F, Buhr HJ, Thiel E, Keilholz U (2004) Quantitative real-time RT-PCR for detection of disseminated tumor cells in peripheral blood of patients with colorectal cancer using different mRNA markers. Int J Cancer 108:219–227

    Article  PubMed  CAS  Google Scholar 

  27. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  28. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  29. Lambrechts AC, Bosma AJ, Klaver SG, Top B, Perebolte L, van’t Veer LJ, Rodenhuis S (1999) Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence-based amplification for the detection of circulating breast cancer cells. Breast Cancer Res Treat 56:219–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Helgi Helgason and Sjoerd Rodenhuis for providing clinical data and samples. This work was supported by the Sixth Framework Program of the European Commission as part of the international DISMAL collaboration for research into disseminated epithelial malignancies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. van’t Veer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molloy, T.J., Bosma, A.J. & van’t Veer, L.J. Towards an optimized platform for the detection, enrichment, and semi-quantitation circulating tumor cells. Breast Cancer Res Treat 112, 297–307 (2008). https://doi.org/10.1007/s10549-007-9872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9872-5

Keywords

Navigation