Skip to main content

Advertisement

Log in

The role of ATM in breast cancer development

  • Review Paper
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Complete or partial inability to sense and repair DNA damage increases the risk of developing cancer. The ataxia telangiectasia mutated (ATM) protein kinase has a crucial role in response to DNA double-strand breaks. Hereditary mutations in the ATM gene are the cause of a rare genomic instability syndrome ataxia telangiectasia (AT) characterized, among others, by elevated cancer risk. Although clear in homozygotes, numerous studies have failed to find a link between heterozygotes and cancer. However, there is increasing evidence that ATM heterozygotes have an increased risk of developing breast cancer. First, epidemiological studies conferred an increased risk of breast cancer among AT relatives. Second, in vitro studies of heterozygous cells provide strong evidence of hyperradiosensitivity. Third, some clinical studies found an increased frequency of ATM mutations among high-risk breast cancer families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39:573–583

    PubMed  CAS  Google Scholar 

  2. Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G (1995) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032

    Article  PubMed  CAS  Google Scholar 

  3. Concannon P, Gatti RA (1997) Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat 10:100–107

    Article  PubMed  CAS  Google Scholar 

  4. Stankovic T, Kidd AM, Sutcliffe A, McGuire GM, Robinson P, Weber P, Bedenham T, Bradwell AR, Easton DF, Lennox GG, Haites N, Byrd PJ, Taylor AM (1998) ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62:334–345

    Article  PubMed  CAS  Google Scholar 

  5. Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631

    Article  PubMed  CAS  Google Scholar 

  6. Sandoval N, Platzer M, Rosenthal A, Dork T, Bendix R, Skawran B, Stuhrmann M, Wegner RD, Sperling K, Banin S, Shiloh Y, Baumer A, Bernthaler U, Sennefelder H, Brohm M, Weber BH, Schindler D (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8:69–79

    Article  PubMed  CAS  Google Scholar 

  7. Gatti RA, Tward A, Concannon P (1999) Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423

    Article  PubMed  CAS  Google Scholar 

  8. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K (1988) Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336:577–580

    Article  PubMed  CAS  Google Scholar 

  9. Uziel T, Savitsky K, Platzer M, Ziv Y, Helbitz T, Nehls M, Boehm T, Rosenthal A, Shiloh Y, Rotman G (1996) Genomic organization of the ATM gene. Genomics 33:317–320

    Article  PubMed  CAS  Google Scholar 

  10. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, Hobson K, Gatei M, Zhang N, Watters D, Egerton M, Shiloh Y, Kharbanda S, Kufe D, Lavin MF (1997) Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387:520–523

    Article  PubMed  CAS  Google Scholar 

  11. Khanna KK (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92:795–802

    Article  PubMed  CAS  Google Scholar 

  12. Lakin ND, Weber P, Stankovic T, Rottinghaus ST, Taylor AM, Jackson SP (1996) Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13:2707–2716

    PubMed  CAS  Google Scholar 

  13. Rotman G, Shiloh Y (1997) Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19:911–917

    Article  PubMed  CAS  Google Scholar 

  14. Lim DS, Kirsch DG, Canman CE, Ahn JH, Ziv Y, Newman LS, Darnell RB, Shiloh Y, Kastan MB (1998) ATM binds to beta-adaptin in cytoplasmic vesicles. Proc Natl Acad Sci USA 95:10146–10151

    Article  PubMed  CAS  Google Scholar 

  15. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  PubMed  CAS  Google Scholar 

  16. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  PubMed  CAS  Google Scholar 

  17. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  18. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96:14973–14977

    Article  PubMed  CAS  Google Scholar 

  19. Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gasser PJ, Park MS, Sung P, Lee EY (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274:12748–12752

    Article  PubMed  CAS  Google Scholar 

  20. Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G (2001) Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res 61:8554–8563

    PubMed  CAS  Google Scholar 

  21. Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22:2860–2871

    Article  PubMed  CAS  Google Scholar 

  22. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308:551–554

    Article  PubMed  CAS  Google Scholar 

  23. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96

    Article  PubMed  CAS  Google Scholar 

  24. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR III, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    Article  PubMed  CAS  Google Scholar 

  25. Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    Article  PubMed  CAS  Google Scholar 

  26. Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)—its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225

    Article  CAS  Google Scholar 

  27. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215

    Article  PubMed  CAS  Google Scholar 

  29. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, Lane WS, Kastan MB, D’Andrea AD (2002) Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459–472

    Article  PubMed  CAS  Google Scholar 

  30. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  31. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  PubMed  CAS  Google Scholar 

  32. Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J, Khanna KK (2003) Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278:14806–14811

    Article  PubMed  CAS  Google Scholar 

  33. Pommier Y, Sordet O, Rao VA, Zhang H, Kohn KW (2005) Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr Pharm Des 11:2855–2872

    Article  PubMed  CAS  Google Scholar 

  34. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294

    Article  PubMed  Google Scholar 

  35. Formichi P, Battisti C, Tripodi SA, Tosi P, Federico A (2000) Apoptotic response and cell cycle transition in ataxia telangiectasia cells exposed to oxidative stress. Life Sci 66:1893–1903

    Article  PubMed  CAS  Google Scholar 

  36. Gladdy RA, Nutter LM, Kunath T, Danska JS, Guidos CJ (2006) p53-independent apoptosis disrupts early organogenesis in embryos lacking both ataxia-telangiectasia mutated and Prkdc. Mol Cancer Res 4:311–318

    Article  PubMed  CAS  Google Scholar 

  37. Piret B, Schoonbroodt S, Piette J (1999) The ATM protein is required for sustained activation of NF-kappaB following DNA damage. Oncogene 18:2261–2271

    Article  PubMed  CAS  Google Scholar 

  38. Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2:E240

    Article  PubMed  CAS  Google Scholar 

  39. Morrell D, Cromartie E, Swift M (1986) Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 77:89–92

    PubMed  CAS  Google Scholar 

  40. Gumy-Pause F, Wacker P, Sappino AP (2004) ATM gene and lymphoid malignancies. Leukemia 18:238–242

    Article  PubMed  CAS  Google Scholar 

  41. Su Y, Swift M (2000) Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med 133:770–778

    PubMed  CAS  Google Scholar 

  42. Inskip HM, Kinlen LJ, Taylor AM, Woods CG, Arlett CF (1999) Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br J Cancer 79:1304–1307

    Article  PubMed  CAS  Google Scholar 

  43. Lantelme E, Turinetto V, Mantovani S, Marchi A, Regazzoni S, Porcedda P, De Marchi M, Giachino C (2003) Analysis of secondary V(D)J rearrangements in mature, peripheral T cells of ataxia-telangiectasia heterozygotes. Lab Invest 83:1467–1475

    Article  PubMed  Google Scholar 

  44. Angele S, Hall J (2000) The ATM gene and breast cancer: is it really a risk factor? Mutat Res 462:167–178

    Article  PubMed  CAS  Google Scholar 

  45. Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7:552–556

    Article  PubMed  CAS  Google Scholar 

  46. Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836

    Article  PubMed  CAS  Google Scholar 

  47. Broeks A, Urbanus JH, Floore AN, Dahler EC, Klijn JG, Rutgers EJ, Devilee P, Russell NS, van Leeuwen FE, van’t Veer LJ (2000) ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet 66:494–500

    Article  PubMed  CAS  Google Scholar 

  48. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, Byrd P, Taylor M, Easton DF (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822

    Article  PubMed  CAS  Google Scholar 

  49. Thorstenson YR, Roxas A, Kroiss R, Jenkins MA, Yu KM, Bachrich T, Muhr D, Wayne TL, Chu G, Davis RW, Wagner TM, Oefner PJ (2003) Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res 63:3325–3333

    PubMed  CAS  Google Scholar 

  50. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875

    Article  PubMed  CAS  Google Scholar 

  51. Teraoka SN, Malone KE, Doody DR, Suter NM, Ostrander EA, Daling JR, Concannon P (2001) Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92:479–487

    Article  PubMed  CAS  Google Scholar 

  52. Sommer SS, Jiang Z, Feng J, Buzin CH, Zheng J, Longmate J, Jung M, Moulds J, Dritschilo A (2003) ATM missense mutations are frequent in patients with breast cancer. Cancer Genet Cytogenet 145:115–120

    Article  PubMed  CAS  Google Scholar 

  53. FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP, Finkelstein DM, Isselbacher KJ, Haber DA (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15:307–310

    Article  PubMed  CAS  Google Scholar 

  54. Ramsay J, Birrell G, Lavin M (1998) Testing for mutations of the ataxia telangiectasia gene in radiosensitive breast cancer patients. Radiother Oncol 47:125–128

    Article  PubMed  CAS  Google Scholar 

  55. Dork T, Bendix R, Bremer M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, Weise S, Stuhrmann M, Karstens JH (2001) Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res 61:7608–7615

    PubMed  CAS  Google Scholar 

  56. Broeks A, Urbanus JH, de Knijff P, Devilee P, Nicke M, Klopper K, Dork T, Floore AN, van’t Veer LJ (2003) IVS10-6T > G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat 21:521–528

    Article  PubMed  CAS  Google Scholar 

  57. Thompson D, Antoniou AC, Jenkins M, Marsh A, Chen X, Wayne T, Tesoriero A, Milne R, Spurdle A, Thorstenson Y, Southey M, Giles GG, Khanna KK, Sambrook J, Oefner P, Goldgar D, Hopper JL, Easton D, Chenevix-Trench G (2005) Two ATM variants and breast cancer risk. Hum Mutat 25:594–595

    Article  PubMed  Google Scholar 

  58. Szabo CI, Schutte M, Broeks A, Houwing-Duistermaat JJ, Thorstenson YR, Durocher F, Oldenburg RA, Wasielewski M, Odefrey F, Thompson D, Floore AN, Kraan J, Klijn JG, van den Ouweland AM, Wagner TM, Devilee P, Simard J, van’t Veer LJ, Goldgar DE, Meijers-Heijboer H (2004) Are ATM mutations 7271T→G and IVS10-6T→G really high-risk breast cancer-susceptibility alleles? Cancer Res 64:840–843

    Article  PubMed  CAS  Google Scholar 

  59. Clarke RA, Fang ZH, Marr PJ, Lee CS, Kearsley JH, Papadatos G (2002) ATM induction insufficiency in a radiosensitive breast-cancer patient. Australas Radiol 46:329–335

    Article  PubMed  CAS  Google Scholar 

  60. Weil MM, Kittrell FS, Yu Y, McCarthy M, Zabriskie RC, Ullrich RL (2001) Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice. Oncogene 20:4409–4411

    Article  PubMed  CAS  Google Scholar 

  61. Hampton GM, Mannermaa A, Winqvist R, Alavaikko M, Blanco G, Taskinen PJ, Kiviniemi H, Newsham I, Cavenee WK, Evans GA (1994) Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res 54:4586–4589

    PubMed  CAS  Google Scholar 

  62. Rio PG, Pernin D, Bay JO, Albuisson E, Kwiatkowski F, De Latour M, Bernard-Gallon DJ, Bignon YJ (1998) Loss of heterozygosity of BRCA1, BRCA2 and ATM genes in sporadic invasive ductal breast carcinoma. Int J Oncol 13:849–853

    PubMed  CAS  Google Scholar 

  63. Koike M, Takeuchi S, Park S, Hatta Y, Yokota J, Tsuruoka N, Koeffler HP (1999) Ovarian cancer: loss of heterozygosity frequently occurs in the ATM gene, but structural alterations do not occur in this gene. Oncology 56:160–163

    Article  PubMed  CAS  Google Scholar 

  64. Bay JO, Uhrhammer N, Pernin D, Presneau N, Tchirkov A, Vuillaume M, Laplace V, Grancho M, Verrelle P, Hall J, Bignon YJ (1999) High incidence of cancer in a family segregating a mutation of the ATM gene: possible role of ATM heterozygosity in cancer. Hum Mutat 14:485–492

    Article  PubMed  CAS  Google Scholar 

  65. Feng J, Yan J, Chen J, Schlake G, Jiang Z, Buzin CH, Sommer SS, Dritschilo A (2003) Absence of somatic ATM missense mutations in 58 mammary carcinomas. Cancer Genet Cytogenet 145:179–182

    Article  PubMed  CAS  Google Scholar 

  66. Janatova M, Zikan M, Dundr P, Matous B, Pohlreich P (2005) Novel somatic mutations in the BRCA1 gene in sporadic breast tumors. Hum Mutat 25:319

    Article  PubMed  Google Scholar 

  67. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120–122

    Article  PubMed  CAS  Google Scholar 

  68. Boultwood J (2001) Ataxia telangiectasia gene mutations in leukaemia and lymphoma. J Clin Pathol 54:512–516

    Article  PubMed  CAS  Google Scholar 

  69. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  70. Gao G, Bracken AP, Burkard K, Pasini D, Classon M, Attwooll C, Sagara M, Imai T, Helin K, Zhao J (2003) NPAT expression is regulated by E2F and is essential for cell cycle progression. Mol Cell Biol 23:2821–2833

    Article  PubMed  CAS  Google Scholar 

  71. Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD (2002) Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21:3864–3871

    Article  PubMed  CAS  Google Scholar 

  72. Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internal Grant Agency of the Ministry of Health of the Czech Republic (Grant No. 9051-3/2006) and the Research Project of the Ministry of Education (Grant No. MSM 0021620808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Prokopcova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokopcova, J., Kleibl, Z., Banwell, C.M. et al. The role of ATM in breast cancer development. Breast Cancer Res Treat 104, 121–128 (2007). https://doi.org/10.1007/s10549-006-9406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9406-6

Keywords

Navigation