Skip to main content

Advertisement

Log in

Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Serine/threonine kinase Akt/PKB is known to regulate divergent cellular processes, including apoptosis, proliferation, differentiation, and metabolism. Akt is activated by a variety of stimuli, through such growth factor receptors as HER2, in phosphoinositide-3-OH kinase (PI3K)-dependent manner. A loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) function also activates Akt. It has recently been shown that Akt activation is associated with a worse outcome among endocrine treated breast cancer patients and that it also inhibits the progesterone receptor (PR) expression via the PI3K/Akt pathway in breast cancer cells. Therefore, the PI3K/Akt signaling pathway has recently attracted considerable attention as a new target for effective therapeutic strategies. In the present study, we investigated the relationship between Akt activation and either HER2 overexpression or PTEN gene alteration, as well as the PR expression. We analyzed the incidence of LOH at the PTEN locus in 138 breast cancer patients, using our new system for microsatellite analysis, called high-resolution fluorescent microsatellite analysis (HRFMA). We showed Akt activation to significantly correlate with HER2 overexpression or LOH at the PTEN gene locus while inversely correlating with the PR expression. In addition, when LOH at the PTEN gene locus and HER2 overexpression occurred simultaneously, the incidence of Akt activation and reduced PR expression was significant. The association between Akt activation and PR negative expression was observed even in the ER-positive cases. Our results suggest that simultaneous PTEN LOH and HER2 overexpression enhances Akt activation and may thus lead to a negative PR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  2. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  PubMed  CAS  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  4. Gullick WJ, Love SB, Wright C, Barnes DM, Gusterson B, Harris AL, Altman DG (1991) c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br J Cancer 63:434–438

    PubMed  CAS  Google Scholar 

  5. Paterson MC, Dietrich KD, Danyluk J, Paterson AH, Lees AW, Jamil N, Hanson J, Jenkins H, Krause BE, McBlain WA et al (1991) Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res 51:556–567

    PubMed  CAS  Google Scholar 

  6. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    Article  PubMed  CAS  Google Scholar 

  7. Siegel PM, Ryan ED, Cardiff RD, Muller WJ (1999) Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 18:2149–2164

    Article  PubMed  CAS  Google Scholar 

  8. Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, Hung MC (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275:8027–8031

    Article  PubMed  CAS  Google Scholar 

  9. Stal O, Perez-Tenorio G, Akerberg L, Olsson B, Nordenskjold B, Skoog L, Rutqvist LE (2003) Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5:R37–44

    Article  PubMed  CAS  Google Scholar 

  10. Tokunaga E, Kimura Y, Oki E, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Baba H, Maehara Y (2006) Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. Int J Cancer 118:284–289

    Article  PubMed  CAS  Google Scholar 

  11. Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan KH, Yang Y, Yang W, Smith TL, Shi D, Yu D (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10:6779–6788

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  13. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  PubMed  CAS  Google Scholar 

  14. Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A, Steck PA et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57:5221–5225

    PubMed  CAS  Google Scholar 

  16. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  17. Feilotter HE, Coulon V, McVeigh JL, Boag AH, Dorion-Bonnet F, Duboue B, Latham WC, Eng C, Mulligan LM, Longy M (1999) Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma. Br J Cancer 79:718–723

    Article  PubMed  CAS  Google Scholar 

  18. Garcia JM, Silva JM, Dominguez G, Gonzalez R, Navarro A, Carretero L, Provencio M, Espana P, Bonilla F (1999) Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat 57:237–243

    Article  PubMed  CAS  Google Scholar 

  19. Singh B, Ittmann MM, Krolewski JJ (1998) Sporadic breast cancers exhibit loss of heterozygosity on chromosome segment 10q23 close to the Cowden disease locus. Genes Chromosomes Cancer 21:166–171

    Article  PubMed  CAS  Google Scholar 

  20. Depowski PL, Rosenthal SI, Ross JS (2001) Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Mod Pathol 14:672–676

    Article  PubMed  CAS  Google Scholar 

  21. Panigrahi AR, Pinder SE, Chan SY, Paish EC, Robertson JF, Ellis IO (2004) The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol 204:93–100

    Article  PubMed  CAS  Google Scholar 

  22. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL, Komminoth P, Lees JA, Mulligan LM, Mutter GL, Eng C (1999) Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 155:1253–1260

    PubMed  CAS  Google Scholar 

  23. Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D, Tsao MS, Mak T, Fyles A, Liu FF (2003) Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer 104:195–203

    Article  PubMed  CAS  Google Scholar 

  24. Torres J, Navarro S, Rogla I, Ripoll F, Lluch A, Garcia-Conde J, Llombart-Bosch A, Cervera J, Pulido R (2001) Heterogeneous lack of expression of the tumour suppressor PTEN protein in human neoplastic tissues. Eur J Cancer 37:114–121

    Article  PubMed  CAS  Google Scholar 

  25. Perez-Tenorio G, Stal O (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86:540–545

    Article  PubMed  CAS  Google Scholar 

  26. Tokunaga E, Kataoka A, Kimura Y, Oki E, Mashino K, Nishida K, Koga T, Morita M, Kakeji Y, Baba H, Ohno S, Maehara Y (2006) The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42:629–635

    Article  PubMed  CAS  Google Scholar 

  27. Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, Lee AV (2003) Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 17:575–588

    Article  PubMed  CAS  Google Scholar 

  28. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, Gibbons JJ (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258

    Article  PubMed  Google Scholar 

  29. Japanese Breast Cancer Society (2001) General rules for clinical and pathological recording of breast cancer, 14th edn. Kanehara, Tokyo

    Google Scholar 

  30. Tokunaga E, Oki E, Oda S, Kataoka A, Kitamura K, Ohno S, Maehara Y, Sugimachi K (2000) Frequency of microsatellite instability in breast cancer determined by high-resolution fluorescent microsatellite analysis. Oncology 59:44–49

    Article  PubMed  CAS  Google Scholar 

  31. Oda S, Oki E, Maehara Y, Sugimachi K (1997) Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis. Nucleic Acids Res 25:3415–3420

    Article  PubMed  CAS  Google Scholar 

  32. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Maehara Y (2005) Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer 117:376–380

    Article  PubMed  CAS  Google Scholar 

  33. Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Janicke F, Miller WR, Evans DB, Dugan M, Brady C, Quebe-Fehling E, Borgs M (2001) Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 19:3808–3816

    PubMed  CAS  Google Scholar 

  34. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ (1999) Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol 17:1983–1987

    PubMed  CAS  Google Scholar 

  35. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V, Gilewski T, Theodoulou M, Moynahan ME, Moasser M, Sklarin N, Dickler M, D’Andrea G, Cristofanilli M, Rivera E, Hortobagyi GN, Norton L, Hudis CA (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19:2587–2595

    PubMed  CAS  Google Scholar 

  36. Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using the SAS system. SAS Institute Inc, Cary, NC

    Google Scholar 

  37. Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R (1998) Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas. Oncogene 17:123–127

    Article  PubMed  CAS  Google Scholar 

  38. Araki K, Wang B, Miyashita K, Cui Q, Ohno S, Baba H, Zhang RG, Sugimachi K, Maehara Y, Oda S (2004) Frequent loss of heterozygosity but rare microsatellite instability in oesophageal cancer in Japanese and Chinese patients. Oncology 67:151–158

    Article  PubMed  CAS  Google Scholar 

  39. Ikeda Y, Oda S, Abe T, Ohno S, Maehara Y, Sugimachi K (2001) Features of microsatellite instability in colorectal cancer: comparison between colon and rectum. Oncology 61:168–174

    Article  PubMed  CAS  Google Scholar 

  40. Maehara Y, Oda S, Sugimachi K (2001) The instability within: problems in current analyses of microsatellite instability. Mutat Res 461:249–263

    PubMed  CAS  Google Scholar 

  41. Oki E, Oda S, Maehara Y, Sugimachi K (1999) Mutated gene-specific phenotypes of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in DNA mismatch repair. Oncogene 18:2143–2147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms. Y. Kubota, Ms. N. Nakamura, Y. Ms. T. Shishino, Ms. K. Yamashita and Ms. N. Makikusa for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriko Tokunaga.

Additional information

This study was supported by grants from the Ministry of Education, Culture, Sports Science, and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokunaga, E., Oki, E., Kimura, Y. et al. Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma. Breast Cancer Res Treat 101, 249–257 (2007). https://doi.org/10.1007/s10549-006-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9295-8

Keywords

Navigation