Skip to main content
Log in

Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In today’s 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased ‘time awake’. All other FNCs became more anti-correlated with increased ‘time awake’. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of ‘time awake’. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500

    Article  CAS  PubMed  Google Scholar 

  • Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37

    Article  PubMed  Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  PubMed  Google Scholar 

  • Allen EA et al (2011a) A baseline for the multivariate comparison of resting-state networks Frontiers in Systems. Neuroscience 5:1–23

    Google Scholar 

  • Allen EA, Erhardt EB, Yonghua W, Eichele T, Calhoun VD (2011b) Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage 59:4141–4159. doi:10.1016/j.neuroimage.2011.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, Lu H (2010) Estimation of labeling efficiency in Pseudocontinuous arterial spin labeling. Magn Reson Med 63:765–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Banks S, Dinges DF (2007) Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 3:519–528

    PubMed  PubMed Central  Google Scholar 

  • Basner M, Rao H, Goel N, Dinges DF (2013) Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol 23:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger RJ, Oswald I (1962) Effects of sleep deprivation on behaviour, subsequent sleep, and dreaming. Br J Psychiatry 108:457–465

    Article  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Blautzik J et al (2013) Classifying fMRI-derived resting-state connectivity patterns according to their daily rhythmicity. Neuroimage 71:298–306

    Article  PubMed  Google Scholar 

  • Braun AR et al (1997) Regional cerebral blood flow throughout the sleep–wake cycle An H2(15)O PET study. Brain 120:1173–1197

    Article  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bunge S, Hazeltine E, Scanlon M, Rosen A, Gabrieli J (2002) Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17:1562–1571. doi:10.1006/nimg.2002.1252

    Article  PubMed  Google Scholar 

  • Buxton RB (2002) Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press, Cambridge, NY

  • Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764. doi:10.1016/j.neuron.2013.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  CAS  PubMed  Google Scholar 

  • Chee MWL, Choo W (2004) Functional imaging of working memory after 24 h of total sleep deprivation. J Neurosci 24:4560–4567

    Article  CAS  PubMed  Google Scholar 

  • Chee MWL, Tan JC (2010) Lapsing when sleep deprived: neural activation characteristics of resistant and vulnerable individuals. Neuroimage 51:835–843

    Article  PubMed  Google Scholar 

  • Chee MWL, Chuah L, Venkatraman V, Chan W, Philip P, Dinges D (2006) Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: correlations of fronto-parietal activation with performance. Neuroimage 31:419–428

    Article  PubMed  Google Scholar 

  • Chee MWL, Tan J, Zheng H, Parimal S, Weissmann D, Zagorodnov V, Dinges DF (2008) Lapsing during sleep deprivation is associated with distributed changes in brain activation. J Neurosci 28:5519–5528. doi:10.1523/JNEUROSCI.0733-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Chee MWL, Tan J, Parimal S, Zagorodnov V (2010) Sleep deprivation and its effects on object-selective attention. Neuroimage 49:1903–1910. doi:10.1016/j.neuroimage.2009.08.067

    Article  PubMed  Google Scholar 

  • Chen JJ, Jann K, Wang DJJ (2015) Characterizing resting-state brain function using arterial-spin labeling. Brain Connect 5:527–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Choo W-C, Lee W-W, Venkatraman V, Sheu F-S, Chee MWL (2005) Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage 25:579–587

    Article  PubMed  Google Scholar 

  • Czisch M, Wehrle R, Harsay H, Wetter TC, Holsboer F, Sämann PG, Drummond SPA (2012) On the need of objective vigilance monitoring: effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI. Front Neurol 3:67. doi:10.3389/fneur.2012.00067

    Article  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    Article  PubMed  Google Scholar 

  • De Havas JA, Parimal S, Soon CS, Chee MWL (2012) Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 59:1745–1751

    Article  PubMed  Google Scholar 

  • Dehaene S, Sergent C, Changeaux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, Part 1: technique and artifacts. AJNR Am J Neuroradiol 29:1228–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinges DF et al (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 h per night. Sleep 20:267–277

    CAS  PubMed  Google Scholar 

  • Drummond S, Gillin J, Brown G (2001) Increased cerebral response during a divided attention task following sleep deprivation. J Sleep Res 10:85–92

    Article  CAS  PubMed  Google Scholar 

  • Drummond SPA, Brown GG, Salamat JS, Gillin JC (2004) Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep 27:445–451

    PubMed  Google Scholar 

  • Drummond S, Bischoff-Grethe A, Dinges D, Ayalon L, Mednick S, Meloy M (2005) The neural basis of the psychomotor vigilance task. Sleep 28:1059–1068

    PubMed  Google Scholar 

  • Erhardt EB, Rachakonda S, Bedrick E, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095. doi:10.1002/hbm.21170

    Article  PubMed  Google Scholar 

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attention networks. Neuroimage 26:471–479

    Article  PubMed  Google Scholar 

  • Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 34:1330–1343. doi:10.1002/hbm.21514

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco A, Mannell M, Calhoun VD, Mayer AR (2013) Impact of analysis methods on the reproducibility and reliability of resting-state networks. Brain Connect 3:363–374 doi:10.1089/brain.2012.0134

    Article  PubMed  PubMed Central  Google Scholar 

  • Heine L et al (2012) Resting state networks and consciousness Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front Psychol 3:295. doi:10.3389/fpsyg.2012.00295

    Article  PubMed  PubMed Central  Google Scholar 

  • Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K (2014) Resting states are resting traits—an fMRI Study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS ONE 9:e103492. doi:10.1371/journal.pone.0103492

    Article  PubMed  PubMed Central  Google Scholar 

  • Hockey GRJ, Wastell DG, Sauer J (1998) Effects of sleep deprivation and user interface on complex performance: a multilevel analysis of compensatory control. Hum Factors 40:233–253

    Article  CAS  PubMed  Google Scholar 

  • Horne JA, Pettitt AN (1985) High incentive effects on vigilance performance during 72 h of total sleep deprivation. Acta Psychol 58:123–139

    Article  CAS  Google Scholar 

  • Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682

    Article  PubMed  Google Scholar 

  • Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain}s default mode network during deep sleep. Proc Natl Acad Sci USA 106:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannaccone R, Hauser T, Staempfli P, Walitza S, Brandeis D, Brem S (2015) Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. Neuroimage 105:395–407. doi:10.1016/j.neuroimage.2014.10.028

    Article  PubMed  Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson Jr AL, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, 1st edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  • Jackson ML et al (2011) The effect of sleep deprivation on BOLD activity elicited by a divided attention task. Brain Imag Behav 5:97–108. doi:10.1007/s11682-011-9115-6

    Article  Google Scholar 

  • Jackson ML, Gunzelmann G, Whitney P, Hinson JM, Belenky G, Rabat A, Van Dongen HPA (2013) Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med Rev 17:215–225

    Article  PubMed  Google Scholar 

  • Jann K, Orosz A, Dierks T, Wang DJJ, Wiest R, Federspiel A (2013) Quantification of network perfusion in ASL cerebral blood flow data with seed based and ICA approaches. Brain Topogr 26:569–580

    Article  PubMed  Google Scholar 

  • Jann K, Gee DG, Kilroy E, Schwab S, Smith RX, Cannon TD, Wang DJJ (2015) Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks. Neuroimage 106:111–122

    Article  PubMed  Google Scholar 

  • Johns MW (1991) A new method for measuring daytime sleepiness: the epworth sleepiness scale. Sleep 14:540–545

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, Shader RI (1997) Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. Pharmcokinetics Pharmacodyn 37:693–703

    CAS  Google Scholar 

  • Kaufmann T et al (2016) The brain functional connectome is robustly altered by lack of sleep. Neuroimage 127:324–332

    Article  PubMed  Google Scholar 

  • Kong D, Soon C, Chee MWL (2012) Functional imaging correlates of impaired distractor suppression following sleep deprivation. Neuroimage 61:50–55

    Article  PubMed  Google Scholar 

  • Kopp B, Rist F, Mattler U (1996) N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology 33:282–294

    Article  CAS  PubMed  Google Scholar 

  • Laird AR et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037

    Article  PubMed  PubMed Central  Google Scholar 

  • Landolt H-P, Rétey JV, Tönz K, Gottselig JM, Khatami R, Isabelle B, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci USA 106:4489–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266

    Article  PubMed  Google Scholar 

  • Lim J, Choo W, Chee MWL (2007) Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task. Sleep 30:61–70

    Article  PubMed  Google Scholar 

  • Lim J, Tan J, Parimal S, Dinges DF, Chee MWL (2010) Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex. PLoS ONE 5:e9087. doi:10.1371/journal.pone.0009087

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu TT, Wong EC (2005) A signal processing model for arterial spin labeling functional MRI. Neuroimage 24:207–215

    Article  PubMed  Google Scholar 

  • Logothetis N, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157. doi:10.1038/35084005

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Dinges DF, Basner M, Rao H (2015) How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis N (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407. doi:10.1523/JNEUROSCI.3985-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Mander B et al (2008) Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention. Brain Res 1217:148–156. doi:10.1016/j.brainres.2008.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34:598–607

    Article  CAS  PubMed  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PloS One 5:e10298. doi:10.1371/journal.pone.0010298

    Article  PubMed  PubMed Central  Google Scholar 

  • Mu Q et al (2005) Decreased cortical response to verbal working memory following sleep deprivation. Sleep 28:55–67

    Article  PubMed  Google Scholar 

  • Muto V et al (2012) Influence of acute sleep loss on the neural correlates of alerting, orientating and executive attention components. J Sleep Res 21:648–658. doi:10.1111/j.1365-2869.2012.01020.x

    Article  PubMed  Google Scholar 

  • Nuwer MR et al (1998) IFCN Standards—IFCN standards for digital recording of clinical EEG. Electroencephalogr Clin Neurophysiol 106:259–261. doi:10.1016/S0013-4694(97)00106-5

    Article  CAS  PubMed  Google Scholar 

  • Ong J, Kong D, Chia T, Tandi J, Yeo BTT, Chee MWL (2015) Co-activated yet disconnected—Neural correlates of eye closures when trying to stay awake. Neuroimage 118:553–562. doi:10.1016/j.neuroimage.2015.03.085

    Article  PubMed  Google Scholar 

  • Portas CM, Howseman AM, Josephs O, Turner R, Frith CD (1998) A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci 18:8979–8989

    CAS  PubMed  Google Scholar 

  • Poudel GR, Innes CRH, Jones RD (2012) Cerebral perfusion differences between drowsy and nondrowsy individuals after acute sleep restriction. Sleep 35:1085–1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154

    Article  PubMed  Google Scholar 

  • Raichle ME (2011) The restless brain. Brain Connect 1:3–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U. S. Department of Health, Education. and Welfare, Public Health Service - National Institutes of Health, National Institute of Neurological Diseases and Blindness, Neurological Information Network, Bethesda, Maryland 20014

  • Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90

    Article  PubMed  Google Scholar 

  • Rubia K, Smith A, Brammer M, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20:351–358

    Article  PubMed  Google Scholar 

  • Sämann PG, Tully C, Spoormaker VI, Wetter TC, Holsboer F, Wehrle R, Czisch M (2010) Increased sleep pressure reduces resting state functional connectivity. Magn Reson Mater Phys Biol Med 23:375–389

    Article  Google Scholar 

  • Sämann PG et al (2011) Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex 21:2082–2093

    Article  PubMed  Google Scholar 

  • Smith SM et al (2009) Correspondence of the brain}s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  CAS  PubMed  Google Scholar 

  • Tomasi D et al (2009) Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 19:233–240. doi:10.1093/cercor/bhn073

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ong J, Patanaik A, Zhou J, Chee M (2016) Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states. Proc Natl Acad Sci USA 113:9653–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb WB, Levy CM (1984) Effects of spaced and repeated total sleep deprivation. Ergon 27:45–58

    Article  CAS  Google Scholar 

  • Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD (2010) Cognitive and default-mode resting state networks: do male and female brains “rest” differently? Hum Brain Mapp 31:1713–1726. doi:10.1002/hbm.20968

    PubMed  Google Scholar 

  • Wilkinson RT (1961) Interaction of lack of sleep with knowledge of results, repeated testing and individual differences. J Exp Psychol 62:263–271

    Article  CAS  PubMed  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    Article  PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  PubMed  Google Scholar 

  • Wu JC et al (2006) Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31:2783–2792

    Article  PubMed  Google Scholar 

  • Wu W-C, St Lawrence KS, Licht DJ, Wang DJJ (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 21:65–73

    Article  PubMed  Google Scholar 

  • Wu W-C, Lien S-H, Chang J-H, Yang S-C (2014) Caffeine alters resting-state functional connectivity measured by blood oxygenation level-dependent MRI. NMR Biomed 27:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Liu P, Pekar JJ, Lu H (2015) Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage 110:39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo BTT, Tandi J, Chee MWL (2015) Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage 111:147–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swiss National Science Foundation grant CRSII3_136249. We thank Drs. Andrea Federspiel, Philipp Stämpfli, Roger Lüchinger, Kay Jann, Roland Dürr, Thomas Rusterholz for technical support and Drs. Thomas Koenig, Mara Kottlow, Lars Michels and Leila Tarokh for fruitful discussions. We also would like to thank Ximena Omlin, Angela Aeschbach, Claudia Aschmann, Daniela Buser, Angela Escobar, Lukas Fürer, Jolanda Müller, Johanna Scherer, Nina Schumacher, Michelle Steinemann, Sarah Untersander and Katharina Wellstein for help with the data acquisition.

Funding

This work was supported by the Swiss National Science Foundation Sinergia grant #136249.

Author information

Authors and Affiliations

Authors

Contributions

LT, AS, DB, ROT and PA designed the experiment. LT and AS performed the experiment. LT, JB and PA analyzed the data. LT and PA wrote the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Peter Achermann.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tüshaus, L., Balsters, J.H., Schläpfer, A. et al. Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity. Brain Topogr 30, 757–773 (2017). https://doi.org/10.1007/s10548-017-0575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0575-x

Keywords

Navigation