Skip to main content
Log in

Influence of Skull Modeling Approaches on EEG Source Localization

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Electroencephalographic source localization (ESL) relies on an accurate model representing the human head for the computation of the forward solution. In this head model, the skull is of utmost importance due to its complex geometry and low conductivity compared to the other tissues inside the head. We investigated the influence of using different skull modeling approaches on ESL. These approaches, consisting in skull conductivity and geometry modeling simplifications, make use of X-ray computed tomography (CT) and magnetic resonance (MR) images to generate seven different head models. A head model with an accurately segmented skull from CT images, including spongy and compact bone compartments as well as some air-filled cavities, was used as the reference model. EEG simulations were performed for a configuration of 32 and 128 electrodes, and for both noiseless and noisy data. The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling. This suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment. We recommend the following guidelines to be taken into account for skull modeling in the generation of subject-specific head models: (i) If CT images are available, i.e., if the geometry of the skull and its different tissue types can be accurately segmented, the conductivity should be modeled as isotropic heterogeneous. The spongy bone might be segmented as an erosion of the compact bone; (ii) when only MR images are available, the skull base should be represented as accurately as possible and the conductivity can be modeled as isotropic heterogeneous, segmenting the spongy bone directly from the MR image; (iii) a large number of EEG electrodes should be used to obtain high spatial sampling, which reduces the localization errors at realistic noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akalin-Acar Z, Gençer NG (2004) An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. Phys Med Biol 49(21):5011–5028

    Article  PubMed  Google Scholar 

  • Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkern M, Matlachov A, Ranken D, Best E et al (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167

    Article  CAS  PubMed  Google Scholar 

  • Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223

    Article  CAS  PubMed  Google Scholar 

  • Baysal U, Haueisen J (2004) Use of a priori information in estimating tissue resistivities–application to human data in vivo. Physiol Meas 44(3):1677–1689

    Google Scholar 

  • Boon P, D’Havé M, Adam C, Vonck K, Baulac M, Vandekerckhove T, De Reuck J (1997) Dipole modeling in epilepsy surgery candidates. Epilepsia 38(2):208–218

    Article  CAS  PubMed  Google Scholar 

  • Brodbeck V, Spinelli L, Lascano A, Wissmeier M, Vargas M, Vulliemoz S, Pollo C, Schaller K, Michel C, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain Behav Evol 134(10):2887–2897

    Article  PubMed  Google Scholar 

  • Brody D, Terry F, Ideker R (1973) Eccentric dipole in a spherical medium: generalized expression for surface potentials. IEEE Trans Biomed Eng 20(2):141–143

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hallez H, Staelens S (2010) Influence of skull conductivity perturbations on EEG dipole source analysis. Med Phys 37:4475

    Article  PubMed  Google Scholar 

  • Crevecoeur G, Montes-Restrepo V, Staelens S (2012) Subspace electrode selection methodology for the reduction of the effect of uncertain conductivity values in the EEG dipole localization: a simulation study using a patient-specific head model. Phys Med Biol 57:1963–1986

    Article  CAS  PubMed  Google Scholar 

  • Cuffin B (1996) EEG localization accuracy improvements using realistically shaped head models. IEEE Trans Biomed Eng 43(3):299–303. doi:10.1109/10.486287

    Article  CAS  PubMed  Google Scholar 

  • Dannhauer M, Lanfer B, Wolters C, Knösche T (2011) Modeling of the human skull in EEG source analysis. Hum Brain Mapp 32(9):1383–1399. doi:10.1002/hbm.21114

    Article  PubMed  Google Scholar 

  • de Munck J, Peters M (1993) A fast method to compute the potential in the multisphere model. IEEE Trans Biomed Eng 40(11):1166–1174

    Article  PubMed  Google Scholar 

  • Despotovic I, Deburchgraeve W, Hallez H, Vansteenkiste E, Philips W (2009) Development of a realistic head model for EEG event-detection and source localization in newborn infants. In: Annual International Conference of the IEEE on Engineering in medicine and biology society, EMBC 2009. pp 2296–2299

  • Foxe J, Murray M, Javitt D (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927

    Article  PubMed  Google Scholar 

  • Friston K (eds) (2006) Statistical parametric mapping: The analysis of functional brain images. Academic Press, London

    Google Scholar 

  • Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24(2):101–119

    Article  PubMed  Google Scholar 

  • Gao N, Zhu SA, He B (2006) A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity. Phys Med Biol 51(12):3067–83. doi:10.1088/0031-9155/51/12/005

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F (2003a) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng 50(6):754–767

    Article  PubMed  Google Scholar 

  • Gonçalves S, de Munck J, Verbunt J, Heethaar R, Lopes da Silva F (2003b) In vivo measurement of skull and brain resistivities with EIT based method and analysis of SEF/SEP data. IEEE Trans Biomed Eng 50(9):1124–1128

    Google Scholar 

  • Güllmar D, Haueisen J, Reichenbach JR (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 51(1):145–63

    Article  PubMed  Google Scholar 

  • Hallez H (2008) Incorporation of anisotropic conductivities in EEG source analysis. Ph.D. Thesis, Ghent University

  • Hallez H, Vanrumste B, Hese P, D’Asseler Y, Lemahieu I, Walle R (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806

    Article  PubMed  Google Scholar 

  • Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri K, Fabri S, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J NeuroEng Rehabil 4(1):46

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallez H, Vanrumste B, Hese P, Delputte S, Lemahieu I (2008) Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 53:1877–1894

    Article  PubMed  Google Scholar 

  • Hallez H, Staelens S, Lemahieu I (2009) Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 54:6079–6093

    Article  PubMed  Google Scholar 

  • Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23(6):728–739

    Article  CAS  PubMed  Google Scholar 

  • Hoekema R, Wieneke G, Leijten F, Van Veelen C, Van Rijen P, Huiskamp G, Ansems J, Van Huffelen A (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281–1287. doi:10.1109/10.797987

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Van Drongelen W, Ding L, Hecox K, Towle V, Frim D, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116(2):456–465

    Google Scholar 

  • Lanfer B, Scherg M, Dannhauer M, Knösche T, Burger M, Wolters C (2012) Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1):418–431

    Article  CAS  PubMed  Google Scholar 

  • Lascano A, Hummel T, Lacroix J, Landis B, Michel C (2010) Spatio-temporal dynamics of olfactory processing in the human brain: an event-related source imaging study. Neurosci Behav Physiol 167(3):700–708

    CAS  Google Scholar 

  • Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Hum Brain Mapp 30(9):2862–2878

    Article  PubMed Central  PubMed  Google Scholar 

  • Lucka F, Pursiainen S, Burger M, Wolters C (2012) Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. NeuroImage 61(4):1364–1382. doi:10.1016/j.neuroimage.2012.04.017

    Article  PubMed  Google Scholar 

  • Lynnerup N, Astrup J, Sejrsen B et al (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med 1(13)

  • Marin G, Guerin C, Baillet S, Garnero L, Meunier G (1998) Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum Brain Mapp 6(4):250–269

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AR, Griffiths DF (1980) The finite difference method in partial differential equations. Wiley, Chichester

    Google Scholar 

  • Montes-Restrepo V, Staelens S (2010) Determination of anisotropic ratio of the skull for EEG source localization in patients with epilepsy. In: Abstracts of the 11th FirW Ph.D. Symposium, Ghent University, Ghent, Belgium, p 62

  • Montes-Restrepo V, Hallez H, Staelens S (2011) Influence of skull inhomogeneities on EEG source localization. In: 8th International Symposium on noninvasive functional source imaging of the brain and heart & 2011, 8th International Conference on Bioelectromagnetism (NFSI & ICBEM), pp 72–76. doi:10.1109/NFSI.2011.5936823

  • Nunez P, Srinivasan R (2005) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  • Oostendorp T, Delbeke J, Stegeman D (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47(11):1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719

    Article  CAS  PubMed  Google Scholar 

  • Pohlmeier R, Buchner H, Knoll G, RienÄcker A, Beckmann R, Pesch J (1997) The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr 9:157–162. doi:10.1007/BF01190384

    Article  CAS  PubMed  Google Scholar 

  • Pursiainen S, Lucka F, Wolters CH (2012) Complete electrode model in EEG: relationship and differences to the point electrode model. Phys Med Biol 57(4):999

    Article  CAS  PubMed  Google Scholar 

  • Ramon C, Schimpf P, Haueisen J (2006) Influence of head models on EEG simulations and inverse source localizations. Biomed Eng Online 5(10). doi:10.1186/1475-925X-5-10

  • Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. NeuroImage 61(4):957–65

    Article  PubMed Central  PubMed  Google Scholar 

  • Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rush S, Driscoll D (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47(6):717–723

    Article  CAS  PubMed  Google Scholar 

  • Ryynänen O, Hyttinen J, Malmivuo J (2006) Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull. IEEE Trans Biomed Eng 53(9):1851–1858

    Article  PubMed  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

  • Sadleir R, Argibay A (2007) Modeling skull electrical properties. Ann Biomed Eng 35(10):1699–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saletu B, Anderer P, Saletu-Zyhlarz G, Pascual-Marqui R (2005) EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle. Clin EEG Neurosci 36(2):108–115

    Article  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Article  CAS  PubMed  Google Scholar 

  • Steinsträter O, Sillekens S, Junghoefer M, Burger M, Wolters C (2010) Sensitivity of beamformer source analysis to deficiencies in forward modeling. Hum Brain Mapp 31(12):1907–1927

    Google Scholar 

  • Stenroos M, Sarvas J (2012) Bioelectromagnetic forward problem: isolated source approach revis(it)ed. Phys Med Biol 57(11):3517

    Article  CAS  PubMed  Google Scholar 

  • Tang C, You F, Cheng G, Gao D, Fu F, Yang G, Dong X (2008) Correlation between structure and resistivity variations of the live human skull. IEEE Trans Biomed Eng 55(9):2286–2292

    Article  PubMed  Google Scholar 

  • Vallaghé S, Clerc M (2009) A global sensitivity analysis of three and four-layer EEG conductivity models. IEEE Trans Biomed Eng 56(4):988–995

    Article  PubMed  Google Scholar 

  • Vanrumste B, Van Hoey G, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2000) Dipole location errors in electroencephalogram source analysis due to volume conductor model errors. Med Biol Eng Comput 38(5):528–534

    Article  CAS  PubMed  Google Scholar 

  • Vanrumste B, Van Hoey G, Van de Walle R, D’Havè M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Wolters C, Anwander A, Tricoche X, Weinstein D, Koch M, MacLeod R (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89(22):223,903–2239,033

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Radiology and Neurology Department of the Ghent University Hospital for providing the patient data used in this study. Victoria Montes-Restrepo was funded by iMinds (Interdisciplinary Institute for Technology). This work is funded by a research grant of the scientific research council of Flanders (FWO-Vlaanderen). The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by Ghent University, the Hercules Foundation and the Flemish Government—Department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Montes-Restrepo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes-Restrepo, V., van Mierlo, P., Strobbe, G. et al. Influence of Skull Modeling Approaches on EEG Source Localization. Brain Topogr 27, 95–111 (2014). https://doi.org/10.1007/s10548-013-0313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0313-y

Keywords

Navigation