Skip to main content
Log in

Alpha- and Theta-Range Cortical Synchronization and Corticomuscular Coherence During Joystick Manipulation in a Virtual Navigation Task

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Previous studies have reported that multiple brain regions are activated during spatial navigation, but it remains unclear how this activation is converted to motor commands for navigation. This study was aimed to investigate synchronization across different brain regions and between cortical areas and muscles during spatial navigation. This synchronization has been suggested to be essential for integrating activity in the multiple brain areas to support higher cognitive functions and for conversion of cortical activity to motor commands. In the present study, the subjects were required to sequentially trace ten checkpoints in a virtual town by manipulating a joystick and to perform this three times while electroencephalograms and electromyograms from the right arm were monitored. Time spent on the task in the third trial was significantly lesser than that in the first trial indicating an improvement in task performance. This repeated learning was associated with an increase in alpha power at the electrodes over the contralateral sensorimotor region and in theta power at the electrodes over the bilateral premotor and frontotemporal regions. Alpha- and theta-range corticocortical coherences between these regions and other brain areas were also increased in the third trial compared to the first trial. Furthermore, alpha- and theta-range corticomuscular coherence was significantly increased in the second and third trials compared to the first trial. These results suggest that alpha- and theta-range synchronous activity across multiple systems is essential for the integrated brain activity required in spatial navigation and for the conversion of this activity to motor commands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17(7):2512–2518

    PubMed  CAS  Google Scholar 

  • Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21(2):373–383

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Olivier B, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501:225–241

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon M, De Tiège X, de Op Beeck M, Pirotte B, Van Bogaert P, Goldman S, Hari R, Jousmaki V (2011) Functional motor-cortex mapping using corticokinematic coherence. Neuroimage 55(4):1475–1479

    Article  PubMed  Google Scholar 

  • Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290

    Article  PubMed  Google Scholar 

  • Brunsdon R, Nickels L, Coltheart M (2007) Topographical disorientation: towards an integrated framework for assessment. Neuropsychol Rehabil 17(1):34–52

    Article  PubMed  Google Scholar 

  • Burgess N, Maguire EA, Spiers HJ, O’Keefe J (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14(2):439–453

    Article  PubMed  CAS  Google Scholar 

  • Caplan JB, Madsen JR, Raghavachari S, Kahana MJ (2001) Distinct patterns of brain oscillations underline two basic parameters of human maze learning. J Neurophysiol 86(1):368–380

    PubMed  CAS  Google Scholar 

  • Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ (2003) Human theta oscillation related to sensorimotor integration and spatial learning. J Neurosci 23(11):4726–4736

    PubMed  CAS  Google Scholar 

  • Cartier C, Bittencourt J, Peressutti C, Machado S, Paes F, Sack AT, Basile LF, Teixeira S, Salles JI, Nardi AE, Cagy M, Piedade R, Arias-Carrion O, Velasques B, Ribeiro P (2012) Premotor and occipital theta asymmetries as discriminators of memory- and stimulus-guided tasks. Brain Res Bull 87(1):103–108

    Article  PubMed  Google Scholar 

  • Chakarov V, Naranjo JR, Schulte-Monting J, Omlor W, Huethe F, Kristeva R (2009) Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol 102(2):1115–1120

    Article  PubMed  Google Scholar 

  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924

    PubMed  CAS  Google Scholar 

  • Cornwell BR, Johnson LL, Holroyd T, Carver FW, Grillon C (2008) Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J Neurosci 28(23):5983–5990

    Article  PubMed  CAS  Google Scholar 

  • Davis SJC, Coltheart M (1999) Rehabilitation of topographical disorientation: an experimental single case study. Neuropsychol Rehabil 9:1–30

    Article  Google Scholar 

  • de Araújo DB, Baffa O, Wakai RT (2002) Theta oscillations and human navigation: a magnetoencephalography study. J Cogn Neurosci 14(1):70–78

    Article  PubMed  Google Scholar 

  • De vico fallani F, Chessa A, Valencia M, Chavez M, Astolfi L, Cincotti F, Mattia D, Babiloni F (2012) Community structure in large-scale cortical networks during motor acts. Chaos, Solitons Fractals 45:603–610

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Dugue L, Marque P, VanRullen R (2011) The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci 31(33):11889–11893

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ (2005) Human hippocampal theta activity during virtual navigation. Hippocampus 15(7):881–889

    Article  PubMed  Google Scholar 

  • Farah MJ (1989) The neural basis of mental imagery. Trends Neurosci 12(10):395–399

    Article  PubMed  CAS  Google Scholar 

  • Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, Stephens JA (1993) The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. J Physiol 470:127–155

    PubMed  CAS  Google Scholar 

  • Grinsted A, Moore J, Jevrejeva S (2004a) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Grinsted A, Moore J, Jevrejeva S (2004b) Cross wavelet and wavelet coherence Matlab toolbox. http://www.pol.ac.uk/home/research/waveletcoherence/

  • Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA 99(4):2299–2302

    Article  PubMed  CAS  Google Scholar 

  • Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63(2):193–203

    Article  PubMed  Google Scholar 

  • Halgren E, Boujon C, Clarke J, Wang C, Chauvel P (2002) Rapid distributed fronto-parieto-occipital processing stages during working memory in humans. Cereb Cortex 12(7):710–728

    Article  PubMed  CAS  Google Scholar 

  • Hansen NL, Nielsen JB (2004) The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans. J Physiol 561:295–306

    Article  PubMed  CAS  Google Scholar 

  • Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37(5):877–888

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Ushida J, Kimura A, Liu M, Tomita Y (2010) Correlation between EEG-EMG coherence during isometric contraction and its imaginary execution. Acta Neurobiol Exp 70(1):76–85

    Google Scholar 

  • Iseki K, Hanakawa T, Shinozaki J, Mankaku M, Fukuyama H (2008) Neural mechanisms involved in mental imagery and observation of gait. Neuroimage 41(3):1021–1031

    Article  PubMed  Google Scholar 

  • Jaiswal N, Ray W, Slobounov S (2010) Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: evidence from an EEG and virtual reality study. Brain Res 1347:80–89

    Article  PubMed  CAS  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  PubMed  Google Scholar 

  • Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178

    Article  PubMed  CAS  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611

    Article  PubMed  Google Scholar 

  • Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399(6738):781–784

    Article  PubMed  CAS  Google Scholar 

  • Kakuda N, Nagaoka M, Wessberg J (1999) Common modulation of motor unit pairs during slow wrist movement in man. J Physiol 520:929–940

    Article  PubMed  CAS  Google Scholar 

  • Kaplan R, Doeller CF, Barnes GR, Litvak V, Duzel E, Bandettini PA, Burgess N (2012) Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning. PLoS Biol 10(2):e1001267

    Article  PubMed  CAS  Google Scholar 

  • Kober SE, Neuper C (2011) Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Int J Psychophysiol 79(3):347–355

    Article  PubMed  Google Scholar 

  • Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36(3):785–792

    Article  PubMed  Google Scholar 

  • Kristeva-Feige R, Fritsch C, Timmer J, Lucking CH (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1):124–131

    Article  PubMed  Google Scholar 

  • Li Y, Umeno K, Hori E, Takakura H, Urakawa S, Ono T, Nishijo H (2009) Global synchronization in the theta band during mental imagery of navigation in humans. Neurosci Res 65(1):44–52

    Article  PubMed  Google Scholar 

  • MacEvoy SP, Epstein RA (2007) Position selectivity in scene- and object-responsive occipitotemporal regions. J Neurophysiol 98(4):2089–2098

    Article  PubMed  Google Scholar 

  • Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924

    Article  PubMed  CAS  Google Scholar 

  • Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94(20):10979–10984

    Article  PubMed  CAS  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Covington J, Townsend J, Sejnowski TJ, Courchesne E (1999) Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci 19(7):2665–2680

    PubMed  CAS  Google Scholar 

  • McAuley JH, Rothwell JC, Marsden CD (1999) Human anticipatory eye movements may reflect rhythmic central nervous activity. Neuroscience 94(2):339–350

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Hallett M (1999) Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clin Neurophysiol 110(11):1892–1899

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal ‘‘theta’’. Prog Neurobiol 86(3):156–185

    Article  PubMed  Google Scholar 

  • Neuper C, Müller-Putz GR, Scherer R, Pfurtscheller G (2006) Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res 159:393–409

    Article  PubMed  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307

    Article  PubMed  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21(1):99–111

    Article  PubMed  Google Scholar 

  • Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2009) Robust methods for reconstructing brain activity and functional connectivity between brain sources with MEG/EEG data. In: ISBI’09 Proceedings of the (2009) (Sixth) IEEE international conference on Symposium on Biomedical Imaging: From Nano to Macro. IEEE Press, Piscataway, pp 1271–1274

    Google Scholar 

  • Palermo L, Iaria G, Guariqlia C (2008) Mental imagery skills and topographical orientation in humans: a correlation study. Behav Brain Res 192(2):248–253

    Article  PubMed  Google Scholar 

  • Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30(4):150–158

    Article  PubMed  CAS  Google Scholar 

  • Palva S, Palva JM (2011) Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol 2:204

    Article  PubMed  Google Scholar 

  • Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230

    Article  PubMed  Google Scholar 

  • Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25(15):3962–3972

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Siplia PK, Strafelia AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86(4):1983–1990

    PubMed  CAS  Google Scholar 

  • Perez MA, Lungholt BKS, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159(2):197–205

    Article  PubMed  Google Scholar 

  • Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motorneurones following visuo-motor skill learning in humans. J Physiol 573:843–855

    Article  PubMed  CAS  Google Scholar 

  • Pollok B, Gross J, Müller K, Aschersleben G, Schnitzler A (2005) The cerebral oscillatory network associated with auditorily paced finger movements. Neuroimage 24(3):646–655

    Article  PubMed  Google Scholar 

  • Raethjen J, Lindemann M, Dümpelmann M, Wenzelburger R, Stolze H, Pfister G, Elger CE, Timmer J, Deuschl G (2002) Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Exp Brain Res 142(1):32–40

    Article  PubMed  Google Scholar 

  • Rappelsberger P, Petsche H (1988) Probability mapping: power and coherence analyses of cognitive processes. Brain Topogr 1(1):46–54

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela F (1999) Perception’s shadow: long-distance synchronization among cortical areas. Nature 397(6718):430–433

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161

    Article  PubMed  CAS  Google Scholar 

  • Salemius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77(6):3401–3405

    Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95(12):7092–7096

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relation? Neuron 24(1):49–65

    Article  PubMed  CAS  Google Scholar 

  • Spiers HJ, Maguire EA (2007a) A navigational guidance system in the human brain. Hippocampus 17(8):618–626

    Article  PubMed  Google Scholar 

  • Spiers HJ, Maguire EA (2007b) Neural substrates of driving behaviour. Neuroimage 36(1):245–255

    Article  PubMed  Google Scholar 

  • Spiers HJ, Maguire EA (2007c) The neuroscience of remote spatial memory: a tale of two cities. Neuroscience 149(1):7–27

    Article  PubMed  CAS  Google Scholar 

  • Summerfield C, Mangels JA (2005) Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage 24(3):692–703

    Article  PubMed  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Linder M, Maurer K, Rodriguez E (2006) Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. J Neurosci 26(31):8168–8175

    Article  PubMed  CAS  Google Scholar 

  • Ushiyama J, Takahashi Y, Ushida J (2010) Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters. J Appl Physiol 109(4):1086–1095

    Article  PubMed  Google Scholar 

  • Vallbo AB, Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol 469:673–691

    PubMed  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  PubMed  CAS  Google Scholar 

  • von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313

    Article  Google Scholar 

  • von Stein A, Chiang C, Konig P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97(26):14748–14753

    Article  Google Scholar 

  • Weiss S, Rappelsberger P (1996) EEG coherence within the 13–18 Hz band as a correlate of a distinct lexical organisation of concrete and abstract nouns in humans. Neurosci Lett 209(1):17–20

    Article  PubMed  CAS  Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  • Wessberg J, Kakuda N (1999) Single motor unit activity in relation to pulsatile motor output in human finger movements. J Physiol 517:273–285

    Article  PubMed  CAS  Google Scholar 

  • White DJ, Congedo M, Ciorciari J, Silberstein RB (2012) Brain oscillatory activity during spatial navigation: theta and gamma activity link medical temporal and parietal regions. J Cogn Neurosci 24(3):686–697

    Article  PubMed  Google Scholar 

  • Witham CL, Riddle CN, Baker MR, Baker SN (2011) Contributions of descending and ascending pathways to corticomuscular coherence in humans. J Physiol 589(Pt 15):3789–3800

    Article  PubMed  CAS  Google Scholar 

  • Witte H, Putsche P, Eiselt M, Hoffmann K, Schack B, Arnold M, Jager H (1997) Analysis of the interrelations between a low-frequency and a high-frequency signal component in human neonatal EEG during quiet sleep. Neurosci Lett 236(3):175–179

    Article  PubMed  CAS  Google Scholar 

  • Witte M, Patino L, Andrykiewicz A, Hepp-Reymond MC, Kristeva R (2007) Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur J Neurosci 26(12):3564–3570

    Article  PubMed  Google Scholar 

  • Witte H, Putsche P, Eiselt M, Schwab K, Wacker M, Leistritz L (2011) Time-variant analysis of phase coupling and amplitude-frequency dependencies of and between frequency components of EEG burst patterns in full-term newborns. Clin Neurophysiol 122(2):253–265

    Article  PubMed  CAS  Google Scholar 

  • Wolbers T, Wiener JM, Mallot HA, Buchel C (2007) Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J Neurosci 27(35):9408–9416

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chen X, Li Z, Han S, Zhang D (2007) Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency. Neuroimage 35(4):1654–1662

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Japan Society for the Promotion of Science Asian Core Program and the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B) (25290005). The founders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Nishijo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, S., Matsumoto, J., Hori, E. et al. Alpha- and Theta-Range Cortical Synchronization and Corticomuscular Coherence During Joystick Manipulation in a Virtual Navigation Task. Brain Topogr 26, 591–605 (2013). https://doi.org/10.1007/s10548-013-0304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0304-z

Keywords

Navigation