Skip to main content
Log in

The Change of Functional Connectivity Specificity in Rats Under Various Anesthesia Levels and its Neural Origin

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Spatiotemporal correlations of spontaneous blood oxygenation level dependent (BOLD) signals measured in the resting brain have been found to imply many resting-state coherent networks under both awake/conscious and anesthetized/unconscious conditions. To understand the resting-state brain networks in the unconscious state, spontaneous BOLD signals from the rat sensorimotor cortex were studied across a wide range of anesthesia levels induced by isoflurane. Distinct resting-state networks covering functionally specific sub-regions of the sensorimotor system were observed under light anesthesia with 1.0 % isoflurane; however, they gradually merged into a highly synchronized and spatially less-specific network under deep anesthesia with 1.8 % isoflurane. The EEG power correlations recorded using three electrodes from a separate group of rats showed similar dependency on anesthesia depth, suggesting the neural origin of the change in functional connectivity specificity. The specific-to-less-specific transition of resting-state networks may reflect a functional reorganization of the brain at different anesthesia levels or brain states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322(5903):876–880

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M, Bloker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0999375-39

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  PubMed  CAS  Google Scholar 

  • Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30(8):2393–2400

    Article  PubMed  CAS  Google Scholar 

  • Carbonell F, Bellec P, Shmuel A (2011) Global and system-specific resting-state FMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks. Brain Connect 1(6):496–510. doi:10.1089/brain.2011.0065

    Article  PubMed  Google Scholar 

  • Contreras D, Steriade M (1997) State-dependent fluctuations of low-frequency rhythms in corticothalamic networks. Neuroscience 76(1):25–38

    Article  PubMed  CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Article  PubMed  CAS  Google Scholar 

  • Du F, Zhu XH, Zhang Y, Friedman M, Zhang N, Ugurbil K, Chen W (2008) Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA 105(17):6409–6414

    Article  PubMed  CAS  Google Scholar 

  • Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93(5):2864–2872

    Article  PubMed  Google Scholar 

  • Ferron JF, Kroeger D, Chever O, Amzica F (2009) Cortical inhibition during burst suppression induced with isoflurane anesthesia. J Neurosci Off J Soc Neurosci 29(31):9850–9860. doi:10.1523/JNEUROSCI.5176-08.2009

    Article  CAS  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283. doi:10.1152/jn.90777.2008

    Article  PubMed  Google Scholar 

  • Garrett KM, Gan J (1998) Enhancement of gamma-aminobutyric acidA receptor activity by alpha-chloralose. J Pharmacol Exp Ther 285(2):680–686

    PubMed  CAS  Google Scholar 

  • Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847

    Article  PubMed  Google Scholar 

  • Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682

    Article  PubMed  Google Scholar 

  • Hudetz AG (2006) Suppressing consciousness: mechanisms of general anesthesia. Seminars Anesth Periop Med Pain 25:196–204

    Article  Google Scholar 

  • Hudetz AG, Imas OA (2007) Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 107(6):983–991

    Article  PubMed  CAS  Google Scholar 

  • Kiviniemi V, Jauhiainen J, Tervonen O, Paakko E, Oikarinen J, Vainionpaa V, Rantala H, Biswal B (2000) Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn Reson Med 44(3):373–378

    Article  PubMed  CAS  Google Scholar 

  • Kiviniemi VJ, Haanpaa H, Kantola JH, Jauhiainen J, Vainionpaa V, Alahuhta S, Tervonen O (2005) Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn Reson Imaging 23(4):531–537

    Article  PubMed  CAS  Google Scholar 

  • Kroeger D, Amzica F (2007) Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci 27(39):10597–10607

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31(10):3776–3783. doi:10.1523/JNEUROSCI.4557-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhu XH, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21(2):374–384. doi:10.1093/cercor/bhq105

    Article  PubMed  Google Scholar 

  • Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, Rea W, Yang Y, Stein EA (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 104(46):18265–18269

    Article  PubMed  CAS  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175

    Article  PubMed  CAS  Google Scholar 

  • Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT (2010) Functional connectivity and alterations in baseline brain state in humans. Neuroimage 49(1):823–834

    Article  PubMed  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905. doi:10.1016/j.neuroimage.2008.09.036

    Article  PubMed  Google Scholar 

  • Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I, Malach R (2008) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11(9):1100–1108

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Peltier SJ, Kerssens C, Hamann SB, Sebel PS, Byas-Smith M, Hu X (2005) Functional connectivity changes with concentration of sevoflurane anesthesia. NeuroReport 16(3):285–288

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME (2006) Neuroscience. The brain’s dark energy. Science 314(5803):1249–1250

    Article  PubMed  CAS  Google Scholar 

  • Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA (2010) Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci USA 107(22):10238–10243. doi:10.1073/pnas.0913110107

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Leopold DA (2008) Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 29(7):751–761

    Article  PubMed  Google Scholar 

  • Shulman RG, Rothman DL, Hyder F (2007) A BOLD search for baseline. Neuroimage 36(2):277–281

    Article  PubMed  Google Scholar 

  • Stern JM, Engel J (2005) Atlas of EEG patterns. Philadelphia, Lippincott Williams & Wilkins pp 107–108

  • Team RDC (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

    Article  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2009) Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum Brain Mapp 31(4):631–644

    Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86

    Article  PubMed  CAS  Google Scholar 

  • Wang K, van Meer MP, van der Marel K, van der Toorn A, Xu L, Liu Y, Viergever MA, Jiang T, Dijkhuizen RM (2011) Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR Biomed 24(1):61–67. doi:10.1002/nbm.1556

    Article  PubMed  Google Scholar 

  • Williams KA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Hu X, Keilholz SD (2010) Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 28(7):995–1003. doi:10.1016/j.mri.2010.03.007

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28. doi:10.1038/nrneurol.2009.198

    Article  PubMed  Google Scholar 

  • Zhao F, Zhao T, Zhou L, Wu Q, Hu X (2008) BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39(1):248–260

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Jennifer Taylor for helpful comments. This work was in part supported by NIH Grants: NS041262, NS041262S1, NS057560, NS070839, P41 RR08079, P41 EB015894, P30NS057091 and P30NS076408; and the Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhu, XH., Zhang, Y. et al. The Change of Functional Connectivity Specificity in Rats Under Various Anesthesia Levels and its Neural Origin. Brain Topogr 26, 363–377 (2013). https://doi.org/10.1007/s10548-012-0267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0267-5

Keywords

Navigation