Skip to main content
Log in

Neuroimaging Evidence for Top-Down Maturation of Selective Auditory Attention

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

This study investigated maturational differences of selective auditory attention effects on transient evoked responses and 40-Hz auditory steady-state responses between children and adults. Magnetoencephalography (MEG) was recorded from children and adults performing a task where they attended to 40-Hz amplitude-modulated (AM) tones of 1,200 Hz while ignoring 40-Hz AM tones of 800 Hz. By using standard dipole-modeling procedures, the N1m of the transient evoked fields and the 40-Hz ASSRs were localized to secondary and primary auditory cortices, respectively. Source waveforms for the transient evoked fields and ASSRs were reconstructed at these locations and compared between attended and unattended tones. Source waveforms revealed attention enhances the sustained negativity of the transient evoked responses in both adults and children around 250 and 400 ms. ASSRs were also found to be enhanced within this time range but only for adults. The results provide evidence for a limited role of attention modification of the 40-Hz ASSRs in children around the age of 12 years old. Because ASSRs are generated in a lower auditory processing stage as compared to the transient auditory evoked responses, findings from the present study could indicate that the maturation of attention progresses in top-to-bottom manner. These findings fit with the notion that as a person gains sensory experience selective gating of relevant from irrelevant information likely occurs at earlier and earlier processing levels in order to become more automatic and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berman S, Friedman D (1995) The development of selective attention as reflected by event-related brain potentials. J Exp Child Psychol 59:1–31

    Article  PubMed  CAS  Google Scholar 

  • Bosnyak DJ, Eaton RA, Roberts LE (2004) Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cereb Cortex 14:1088–1099

    Article  PubMed  Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon, New York

    Book  Google Scholar 

  • Cheyne D, Bakhtazad L, Gaetz W (2006) Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. Hum Brain Mapp 27:213–229

    Article  PubMed  Google Scholar 

  • D’Angiulli A, Herdman A, Stapells D, Hertzman C (2008) Children’s event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology 22:293–300

    Article  PubMed  Google Scholar 

  • Doyle A (1973) Listening to distraction: a developmental study of selective attention. J Exp Child Psychol 15:100–115

    Article  PubMed  CAS  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647

    Article  PubMed  CAS  Google Scholar 

  • Gomes H, Molholm S, Christodoulou C, Ritter W, Cowan N (2000) The development of auditory attention in children. Front Biosci 5:D108–D120

    Article  PubMed  CAS  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain: review. Rev Mod Phys 65:413–496

    Article  Google Scholar 

  • Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol 49:277–290

    Article  PubMed  CAS  Google Scholar 

  • Herdman AT, Wollbrink A, Chau W, Ishii R, Ross B, Pantev C (2003) Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry. Neuroimage 20:995–1005

    Article  PubMed  Google Scholar 

  • Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  PubMed  CAS  Google Scholar 

  • Howell DC (1997) Statistical methods for psychology, 4th edn. Wadsworth Publishing Co., Belmont

    Google Scholar 

  • Lazzouni L, Ross B, Voss P, Lepore F (2010) Neuromagnetic auditory steady-state responses to amplitude modulated sounds following dichotic or monaural presentation. Clin Neurophysiol 121:200–207

    Article  PubMed  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Näätänen R, Michie PT (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136

    Article  PubMed  Google Scholar 

  • Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329

    Article  Google Scholar 

  • Norman DA (1968) Toward a theory of memory and attention. Psychol Rev 75:522–536

    Article  Google Scholar 

  • Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74

    Article  PubMed  CAS  Google Scholar 

  • Picton TW (2010) Human auditory evoked potentials. Plural Publishing Inc., San Diego

    Google Scholar 

  • Picton TW, Taylor MJ (2007) Electrophysiological evaluation of human brain development. Dev Neuropsychol 31:251–280

    Article  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  PubMed  CAS  Google Scholar 

  • Ross B, Picton TW, Herdman AT, Pantev C (2004) The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004:22

    PubMed  CAS  Google Scholar 

  • Ross B, Hillyard SA, Picton TW (2010) Temporal dynamics of selective attention during dichotic listening. Cereb Cortex 20:1360–1371

    Article  PubMed  Google Scholar 

  • Schwent VL, Snyder E, Hillyard SA (1976) Auditory evoked potentials during multichannel selective listening: role of pitch and localization cues. J Exp Psychol Hum Percept Perform 2:313–325

    Article  PubMed  CAS  Google Scholar 

  • Sexton MA, Geffen G (1979) Development of three strategies of attention in dichotic monitoring. Dev Psychol 15:299–310

    Article  Google Scholar 

  • Stapells DR, Linden D, Suffield JB, Hamel G, Picton TW (1984) Human auditory steady state potentials. Ear Hear 5:105–113

    Article  PubMed  CAS  Google Scholar 

  • Stevens C, Lauinger B, Neville H (2009) Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: an event-related brain potential study. Dev Sci 12:634–646

    Article  PubMed  Google Scholar 

  • Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Näätänen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60

    Article  PubMed  CAS  Google Scholar 

  • Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76:282–299

    Article  PubMed  CAS  Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci USA 90:8722–8726

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich JL, Cone-Wesson BK (2006) Maturation of CAEP in infants and young children: a review. Hear Res 212:212–223

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Grants from the Natural Sciences and Engineering Research Council of Canada, Human Early Learning Partnership, and Michael Smith Foundation for Health Research supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony T. Herdman.

Additional information

This is one of several papers published together in Brain Topography on the “Special Issue: Brain Imaging across the Lifespan”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herdman, A.T. Neuroimaging Evidence for Top-Down Maturation of Selective Auditory Attention. Brain Topogr 24, 271–278 (2011). https://doi.org/10.1007/s10548-011-0182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0182-1

Keywords

Navigation