Skip to main content

Advertisement

Log in

Development and Decline of Memory Functions in Normal, Pathological and Healthy Successful Aging

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Many neuroimaging studies of age-related memory decline interpret resultant differences in brain activation patterns in the elderly as reflecting a type of compensatory response or regression to a simpler state of brain organization. Here we review a series of our own studies which lead us to an alternative interpretation, and highlights a couple of potential confounds in the aging literature that may act to increase the variability of results within age groups and across laboratories. From our perspective, level of cognitive functioning achieved by a group of elderly is largely determined by the health of individuals within this group. Individuals with a history of hypertension, for example, are likely to have multiple white matter insults which compromise cognitive functioning, independent of aging processes. The health of the elderly group has not been well-documented in most previous studies and elderly participants are rarely excluded, or placed into a separate group, due to health-related problems. In addition, recent results show that white matter tracts within the frontal and temporal lobes, regions critical for higher cognitive functions, continue to mature well into the 4th decade of life. This suggests that a young age group may not be the best control group for understanding aging effects on the brain since development is ongoing within this age range. Therefore, we have added a middle-age group to our studies in order to better understand normal development across the lifespan as well as effects of pathology on cognitive functioning in the aging brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL (2002) A developmental fMRI study of the Stroop color-word task. Neuroimage 16:61–75

    Article  PubMed  Google Scholar 

  • Aine CJ, Woodruff CC, Knoefel JE, Adair JC, Hudson D, Qualls C, Bockholt J, Best E, Kovacevic S, Cobb W, Padilla D, Hart B, Stephen JM (2006) Aging: compensation or maturation? Neuroimage 32:1891–1904

    Article  PubMed  Google Scholar 

  • Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montano R, Hayek R, Qualls C, Ranken D, Stephen JM (2010) Different strategies for auditory word recognition in healthy versus normal aging. Neuroimage 49:3319–3330

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Hubbard BM, Coghill GR, Slidders W (1983) The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J Neurol Sci 58:235–246

    Article  PubMed  CAS  Google Scholar 

  • Artero S, Tiemeier H, Prins ND, Sabatier R, Breteler MM, Ritchie K (2004) Neuroanatomical localisation and clinical correlates of white matter lesions in the elderly. J Neurol Neurosurg Psychiatry 75:1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Awad N, Gagnon M, Messier C (2004) The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 26:1044–1080

    Article  PubMed  Google Scholar 

  • Baddeley A, Chincotta D, Adlam A (2001) Working memory and the control of action: evidence from task switching. J Exp Psychol Gen 130:641–657

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465

    Article  PubMed  CAS  Google Scholar 

  • Bellamy D (1997) Mechanism of ageing. In: Pathy MSJ (ed) Principles and practice of geriatric medicine. Wiley, New York, pp 13–30

    Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    PubMed  CAS  Google Scholar 

  • Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155

    Article  PubMed  Google Scholar 

  • Bor D, Duncan J, Wiseman RJ, Owen AM (2003) Encoding strategies dissociate prefrontal activity from working memory demand. Neuron 37:361–367

    Article  PubMed  CAS  Google Scholar 

  • Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH, van Harskamp F, Tanghe HL, de Jong PT, van Gijn J et al (1994) Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 44:1246–1252

    PubMed  CAS  Google Scholar 

  • Burgmans S, van Boxtel MP, Vuurman EF, Smeets F, Gronenschild EH, Uylings HB, Jolles J (2009) The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology 23:541–550

    Article  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17:1394–1402

    Article  PubMed  Google Scholar 

  • Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14:364–375

    Article  PubMed  Google Scholar 

  • Cardenas VA, Chao LL, Studholme C, Yaffe K, Miller BL, Madison C, Buckley ST, Mungas D, Schuff N, Weiner MW (2009) Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiol Aging

  • Casey BJ, Galvan A, Hare TA (2005) Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol 15:239–244

    Article  PubMed  CAS  Google Scholar 

  • Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA 101:3316–3321

    Article  PubMed  CAS  Google Scholar 

  • Colcombe SJ, Kramer AF, Erickson KI, Scalf P (2005) The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol Aging 20:363–375

    Article  PubMed  Google Scholar 

  • Cook IA, Leuchter AF, Morgan ML, Conlee EW, David S, Lufkin R, Babaie A, Dunkin JJ, O’Hara R, Simon S, Lightner A, Thomas S, Broumandi D, Badjatia N, Mickes L, Mody RK, Arora S, Zheng Z, Abrams M, Rosenberg-Thompson S (2002) Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control subjects. Arch Neurol 59:1612–1620

    Article  PubMed  Google Scholar 

  • Craik FI (2006) Brain-behavior relations across the lifespan: a commentary. Neurosci Biobehav Rev 30:885–892

    Article  PubMed  Google Scholar 

  • D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281

    Article  PubMed  Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  PubMed  CAS  Google Scholar 

  • Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C (2003) Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 126:43–56

    Article  PubMed  CAS  Google Scholar 

  • Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior–anterior shift in aging. Cereb Cortex 18:1201–1209

    Article  PubMed  Google Scholar 

  • De Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J, Breteler MM (2002) Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 52:335–341

    Article  PubMed  Google Scholar 

  • de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (1999) A follow-up study of blood pressure and cerebral white matter lesions. Ann Neurol 46:827–833

    Article  PubMed  Google Scholar 

  • DeCarli C, Miller BL, Swan GE, Reed T, Wolf PA, Carmelli D (2001) Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute Twin Study. Arch Neurol 58:643–647

    Article  PubMed  CAS  Google Scholar 

  • Dufouil C, de Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L, Alperovitch A, Tzourio C (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 56:921–926

    PubMed  CAS  Google Scholar 

  • Emerson M, Miyake A (2003) The role of inner speech in task switching: a dual-task investigation. J Memory Lang 48:148–168

    Article  Google Scholar 

  • Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, Gach HM, Thompson PM, Ho AJ, Kuller LH (2010) Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology 75:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 9:453–463

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2003) Cortex and mind: unifying cognition. Oxford University Press, New York

    Google Scholar 

  • Gathercole SE, Pickering SJ, Ambridge B, Wearing H (2004) The structure of working memory from 4 to 15 years of age. Dev Psychol 40:177–190

    Article  PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  CAS  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF III, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    Article  PubMed  CAS  Google Scholar 

  • Grady C, McIntosh A, Craik F (2003) Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus 13:572–586

    Article  PubMed  Google Scholar 

  • Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G (2006) Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18:227–241

    Article  PubMed  Google Scholar 

  • Grasby PM, Frith CD, Friston KJ, Simpson J, Fletcher PC, Frackowiak RS, Dolan RJ (1994) A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 117(Pt 6):1271–1282

    Article  PubMed  Google Scholar 

  • Gunning-Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224–232

    Article  PubMed  CAS  Google Scholar 

  • Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE, McAvoy M, Morris JC, Snyder AZ (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14:410–423

    Article  PubMed  Google Scholar 

  • Henson RN, Burgess N, Frith CD (2000) Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 38:426–440

    Article  PubMed  CAS  Google Scholar 

  • Huizinga M, Dolan CV, van der Molen MW (2006) Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44:2017–2036

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25:978–988

    Article  PubMed  CAS  Google Scholar 

  • Illes J, Kirschen MP, Edwards E, Stanford LR, Bandettini P, Cho MK, Ford PJ, Glover GH, Kulynych J, Macklin R, Michael DB, Wolf SM (2006) Ethics. Incidental findings in brain imaging research. Science 311:783–784

    Article  PubMed  CAS  Google Scholar 

  • Inzitari D (2000) Age-related white matter changes and cognitive impairment. Ann Neurol 47:141–143

    Article  PubMed  CAS  Google Scholar 

  • Jagust WJ (1994) Neuroimaging in normal aging and dementia. In: Albert M, Knoefel J (eds) Clinical neurology of aging, 2nd edn. Oxford University Press, New York, pp 190–213

    Google Scholar 

  • Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2011) Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp

  • Klingberg T (2006) Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44:2171–2177

    Article  PubMed  Google Scholar 

  • Kray J, Eber J, Lindenberger U (2004) Age differences in executive functioning across the lifespan: the role of verbalization in task preparation. Acta Psychol (Amst) 115:143–165

    Article  Google Scholar 

  • Kuo HK, Lipsitz LA (2004) Cerebral white matter changes and geriatric syndromes: is there a link? J Gerontol A 59:818–826

    Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  • Lindenberger U, Scherer H, Baltes PB (2001) The strong connection between sensory and cognitive performance in old age: not due to sensory acuity reductions operating during cognitive assessment. Psychol Aging 16:196–205

    Article  PubMed  CAS  Google Scholar 

  • Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840

    Article  PubMed  CAS  Google Scholar 

  • Luna B, Sweeney JA (2004) The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Ann N Y Acad Sci 1021:296–309

    Article  PubMed  Google Scholar 

  • Luria AR (1959) The directive function of speech in development and dissolution, Part 1. Word 15:341–352

    Google Scholar 

  • Madden DJ, Turkington TG, Provenzale JM, Denny LL, Hawk TC, Gottlob LR, Coleman RE (1999) Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum Brain Mapp 7:115–135

    Article  PubMed  CAS  Google Scholar 

  • Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, Biessels GJ (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    Article  PubMed  CAS  Google Scholar 

  • Marks BL, Madden DJ, Bucur B, Provenzale JM, White LE, Cabeza R, Huettel SA (2007) Role of aerobic fitness and aging on cerebral white matter integrity. Ann N Y Acad Sci 1097:171–174

    Article  PubMed  Google Scholar 

  • Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2:89–101

    Article  PubMed  CAS  Google Scholar 

  • Meulenbroek O, Petersson KM, Voermans N, Weber B, Fernandez G (2004) Age differences in neural correlates of route encoding and route recognition. Neuroimage 22:1503–1514.

    Article  PubMed  Google Scholar 

  • Miller MB, Van Horn JD, Wolford GL, Handy TC, Valsangkar-Smyth M, Inati S, Grafton S, Gazzaniga MS (2002) Extensive individual differences in brain activations associated with episodic retrieval are reliable over time. J Cogn Neurosci 14:1200–1214

    Article  PubMed  Google Scholar 

  • Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582

    Article  PubMed  Google Scholar 

  • Moscovitch M, Winocur G (1995) Frontal lobes, memory, and aging. Ann N Y Acad Sci 769:119–150

    Article  PubMed  CAS  Google Scholar 

  • Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557

    Article  PubMed  CAS  Google Scholar 

  • Muller NG, Knight RT (2006) The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience 139:51–58

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16:1227–1233

    Article  PubMed  Google Scholar 

  • Nordahl CW, Ranganath C, Yonelinas AP, Decarli C, Fletcher E, Jagust WJ (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cogn Neurosci 18:418–429

    Article  PubMed  Google Scholar 

  • Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11:424–446

    Article  PubMed  CAS  Google Scholar 

  • Oosterman JM, Sergeant JA, Weinstein HC, Scherder EJ (2004) Timed executive functions and white matter in aging with and without cardiovascular risk factors. Rev Neurosci 15:439–462

    Article  PubMed  Google Scholar 

  • Pantoni L, Poggesi A, Inzitari D (2007) The relation between white-matter lesions and cognition. Curr Opin Neurol 20:390–397

    Article  PubMed  Google Scholar 

  • Park J, Carp J, Hebrank A, Park DC, Polk TA (2010) Neural specificity predicts fluid processing ability in older adults. J Neurosci 30:9253–9259

    PubMed  CAS  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  PubMed  CAS  Google Scholar 

  • Persson J, Nyberg L, Lind J, Larsson A, Nilsson LG, Ingvar M, Buckner RL (2006) Structure-function correlates of cognitive decline in aging. Cereb Cortex 16:907–915

    Article  PubMed  Google Scholar 

  • Petrides M (1994) Frontal lobes and behaviour. Curr Opin Neurobiol 4:207–211

    Article  PubMed  CAS  Google Scholar 

  • Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological issues—a theoretical review. Neuroimage 12:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ranken DM, Stephen JM, George JS (2004) MUSIC seeded multi-dipole MEG modeling using the Constrained Start Spatio-Temporal modeling procedure. Neurol Clin Neurophysiol 2004:80

    PubMed  CAS  Google Scholar 

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689

    Article  PubMed  Google Scholar 

  • Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 51:501–511

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 15:245–251

    Article  PubMed  CAS  Google Scholar 

  • Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187

    Article  PubMed  CAS  Google Scholar 

  • Romine CB, Reynolds CR (2004) Sequential memory: a developmental perspective on its relation to frontal lobe functioning. Neuropsychol Rev 14:43–64

    Article  PubMed  Google Scholar 

  • Ronnlund M, Nyberg L, Backman L, Nilsson LG (2005) Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol Aging 20:3–18

    Article  PubMed  Google Scholar 

  • Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C, Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110

    Article  PubMed  CAS  Google Scholar 

  • Rowe JW, Kahn RL (1987) Human aging: usual and successful. Science 237:143–149

    Article  PubMed  CAS  Google Scholar 

  • Rypma B, D’Esposito M (2000) Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci 3:509–515

    Article  PubMed  CAS  Google Scholar 

  • Rypma B, Berger JS, Genova HM, Rebbechi D, D’Esposito M (2005) Dissociating age-related changes in cognitive strategy and neural efficiency using event-related fMRI. Cortex 41:582–594

    Article  PubMed  Google Scholar 

  • Rypma B, Berger JS, Prabhakaran V, Bly BM, Kimberg DY, Biswal BB, D’Esposito M (2006) Neural correlates of cognitive efficiency. Neuroimage 33:969–979

    Article  PubMed  Google Scholar 

  • Sakai KL (2005) Language acquisition and brain development. Science 310:815–819

    Article  PubMed  CAS  Google Scholar 

  • Scherf KS, Sweeney JA, Luna B (2006) Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci 18:1045–1058

    Article  PubMed  Google Scholar 

  • Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296:1476–1479

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, Barkhof F, Fazekas F (2004) White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 63:139–144

    PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, MacKay CE, Watkins KE, Ciccarelli O, Cader MZ, Mathews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829

    PubMed  CAS  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Taki Y, Kinomura S, Sato K, Goto R, Wu K, Kawashima R, Fukuda H (2010) Correlation between degree of white matter hyperintensities and global gray matter volume decline rate. Neuroradiology

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Article  PubMed  CAS  Google Scholar 

  • Tisserand DJ, Jolles J (2003) On the involvement of prefrontal networks in cognitive ageing. Cortex 39:1107–1128

    Article  PubMed  Google Scholar 

  • Tullberg M, Fletcher E, DeCarli C, Mungas D, Reed BR, Harvey DJ, Weiner MW, Chui HC, Jagust WJ (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63:246–253

    PubMed  CAS  Google Scholar 

  • Tun PA, Wingfield A, Rosen MJ, Blanchard L (1998) Response latencies for false memories: gist-based processes in normal aging. Psychol Aging 13:230–241

    Article  PubMed  CAS  Google Scholar 

  • Van Horn JD, Grafton ST, Miller MB (2008) Individual variability in brain activity: a nuisance or an opportunity? Brain Imaging Behav 2:327–334

    Article  PubMed  Google Scholar 

  • Walter H, Bretschneider V, Gron G, Zurowski B, Wunderlich AP, Tomczak R, Spitzer M (2003) Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex 39:897–911

    Article  PubMed  Google Scholar 

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292

    Article  PubMed  CAS  Google Scholar 

  • Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P, Engvig A, Grydeland H, Tamnes CK, Ostby Y, Fjell AM (2010) Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. Neuroimage 52:172–185

    Article  PubMed  Google Scholar 

  • Yue NC, Arnold AM, Longstreth WT Jr, Elster AD, Jungreis CA, O’Leary DH, Poirier VC, Bryan RN (1997) Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the Cardiovascular Health Study. Radiology 202:33–39

    PubMed  CAS  Google Scholar 

  • Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y (2007) Age-related changes in brain activation during a delayed item recognition task. Neurobiol Aging 28:784–798

    Article  PubMed  Google Scholar 

  • Zelazo PD, Craik FI, Booth L (2004) Executive function across the life span. Acta Psychol (Amst) 115:167–183

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 AG029495, R01 AG020302, and CTSC Pilot Project NCRR 1UL1RR031977 to UNM HSC, and P20 RR021938 to MRN. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes on Aging or the National Institutes of Health. This work was also supported in part by a VA Merit Review grant, by the Department of Energy under Award Number DE-FG02-99ER62764 to the Mind Research Network, the Radiology Department at UNM SOM, and the Research Service at the New Mexico VA Health Care System. The authors wish to thank Reyaad Hayek, Blaine Hart, Clifford Qualls, Jennifer Bryant, Christopher Donahue, Megan Schendel, Laura Lundy, Jamie MacArthur, and Rebecca Montaño for their help with neuroradiological reports, statistics, data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Aine.

Additional information

This is one of several papers published together in Brain Topography on the “Special Issue: Brain Imaging across the Lifespan”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aine, C.J., Sanfratello, L., Adair, J.C. et al. Development and Decline of Memory Functions in Normal, Pathological and Healthy Successful Aging. Brain Topogr 24, 323–339 (2011). https://doi.org/10.1007/s10548-011-0178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0178-x

Keywords

Navigation