Skip to main content
Log in

Thinning of the Motor–Cingulate–Insular Cortices in Siblings Concordant for Tourette Syndrome

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Fraternal twin studies on normal subjects have demonstrated low heritability (intra-class correlation coefficient) estimates for frontal brain regions (r = 0.43). Here we aimed to investigate the relatedness/similarity estimates of the frontal brain regions in fraternal subjects concordant for Tourette syndrome (TS). We sought to identify regional brain similarities between siblings concordant for TS as an exploratory step towards the identification of potential brain structures involved in the TS phenotype. The identified brain structures may then serve in subsequent molecular genetic and linkage studies. In addition, we regressed cortical thickness and TS clinical severity scores to assess the relation between TS clinical symptoms and cortical structures. Sixteen sibling pairs concordant for TS were scanned using a 1.5 T magnetic resonance imaging scanner (age range 10–25, mean 17.19 ± 4.1). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. TS was assessed using the Children’s Yale-Brown Obsessive Compulsive Scale (CY-BOCS), Yale Global Tic Severity Scale (YGTSS) and the Goetz Tic Scale. We report high relatedness/similarity estimates for fraternal siblings concordant for TS (r = 0.86–0.60) in the middle frontal-motor/cingulate/insular cortices. Regression analysis revealed significant negative correlations in the right insula with the YGTSS (r = −0.41, F = 6.09, P < 0.02) and the left cingulated cortex with the (CY-BOCS) (r = −0.35, F = 4.30, P < 0.05). Since previous findings have concluded that normal fraternal siblings are less alike in frontal cortices, the present findings may be attributed to TS. We speculate that the high ICC between siblings and the negative correlation between TS symptoms severity and cortical thickness measurements are related to the disturbances in the maturation of the motor–cingulate–insular cortical neural system that mediate self-regulatory processes. Such delayed maturation may consequently contribute to the development of TS by releasing motor and vocal tics from regulatory control. These findings may have important genetic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

  • Aruga J, Yokota N, Mikoshiba K (2003) Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene 315(2):87–94

    Article  PubMed  CAS  Google Scholar 

  • Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, Kansaku K, Wurzman R, Hallett M (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129(Pt 8):2029–2037

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Worsley KJ, Robbins S, Paus T, Taylor J, Giedd JN, Rapoport JL, Evans AC (2003) Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 18(2):198–213

    Article  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    Article  PubMed  Google Scholar 

  • Giedd JN, Schmitt JE, Neale MC (2007) Structural brain magnetic resonance imaging of pediatric twins. Hum Brain Mapp 28(6):474–481

    Article  PubMed  Google Scholar 

  • Goetz CG, Tanner CM, Wilson RS, Shannon KM (1987) A rating scale for Gilles de la Tourette’s syndrome: description, reliability, and validity data. Neurology 7:1542–1544

    Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210(5-6):411–417

    Article  Google Scholar 

  • Kawohl W, Bruhl A, Krowatschek G, Ketteler D, Herwig U (2008) Functional magnetic resonance imaging of tics and tic suppression in Gilles de la Tourette syndrome. World J Biol Psychiatry 3:1–4. Retrieved August 27, 2009 from http://www.informaworld.com/10.1080/15622970802118356

    Google Scholar 

  • Laurin N, Wigg KG, Feng Y, Sandor P, Barr CL (2009) Chromosome 5 and Gilles de la Tourette syndrome: linkage in a large pedigree and association study of six candidates in the region. Am J Med Genet B Neuropsychiatr Genet 150B(1):95–103

    Article  PubMed  CAS  Google Scholar 

  • Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, Cohen DJ (1989) The Yale Global Tic severity scale: initial testing of a clinician-rated scale of tic-severity. J Am Acad Child Adolesc Psychiatry 28:566–573

    Article  PubMed  CAS  Google Scholar 

  • Leckman JF, Knorr AM, Rasmusson AM, Cohen DJ (1991) Basal ganglia research and Tourette’s syndrome. Trends Neurosci 14:94

    Article  PubMed  CAS  Google Scholar 

  • Leckman JF, Zhang H, Vitale Lahnin F, Lynch K, Bondi C, Kim YS, Peterson BS (1998) Course of tic severity in Tourette’s syndrome: the first two decades. Pediatrics 102:14–19

    Article  PubMed  CAS  Google Scholar 

  • Leckman JF, Cohen DJ, Goetz CG, Jankovic J (2001) Tourette syndrome: pieces of the puzzle. Adv Neurol 85:369–390

    PubMed  CAS  Google Scholar 

  • Lenroot RK, Schmitt JE, Ordaz SJ, Wallace GL, Neale MC, Lerch JP, Kendler KS, Evans AC, Giedd JN (2009) Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 30(1):163–174

    Article  PubMed  Google Scholar 

  • Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173

    Article  PubMed  Google Scholar 

  • Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34:1535–1544

    Article  PubMed  Google Scholar 

  • Marsh R, Zhu H, Wang Z, Skudlarski P, Peterson BS (2007) A developmental fMRI study of self-regulatory control in Tourette’s syndrome. Am J Psychiatry 164(6):955–966

    Article  PubMed  Google Scholar 

  • Miodonski A (1974) The angioarchitectonics and cytoarchitectonics (impregnation modo Golgi-Cox) structure of the fissural frontal neocortex in dog. Folia Biol (Krakow) 22:237–279

    CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pauls DL (2003) An update on the genetics of Gilles de la Tourette syndrome. J Psychosom Res 55(1):7–12

    Article  PubMed  Google Scholar 

  • Peper JS, Schnack HG, Brouwer RM, Van Baal GC, Pjetri E, Székely E, van Leeuwen M, van den Berg SM, Collins DL, Evans AC, Boomsma DI, Kahn RS, Hulshoff Pol HE (2009). Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum Brain Mapp 30(7):2184–2196

    Article  PubMed  Google Scholar 

  • Plomin R, Kosslyn SM (2001) Genes, brain and cognition. Nat Neurosci 4(12):1253–1258

    Article  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    Article  PubMed  CAS  Google Scholar 

  • Robbins S, Evans AC, Collins DL, Whitesides S (2004) Tuning and comparing spatial normalization methods. Med Image Anal 8(3):311–323

    Article  PubMed  Google Scholar 

  • Robertson MM (1989) The Gilles de la Tourette syndrome: the current status. Br J Psychiatry 154:147–169

    Article  PubMed  CAS  Google Scholar 

  • Robertson MM, Cavanna AE (2007) The disaster was my fault! Neurocase 13(5):446–451

    PubMed  Google Scholar 

  • Robertson MM, Eapen V (1992) Pharmacologic controversy of CNS stimulants in Gilles de la Tourette’s syndrome. Clin Neuropharmacol 15(5):408–425

    Article  PubMed  CAS  Google Scholar 

  • Scahill L, Riddle MA, McSwiggin-Hardin M, Ort SI, King RA, Goodman WK, Cicchetti D, Leckman JF (1997) Children’s Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry 36:844–852

    Article  PubMed  CAS  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  PubMed  CAS  Google Scholar 

  • Speed WC, O’Roak BJ, Tárnok Z, Barta C, Pakstis AJ, State MW, Kidd KK (2008) Haplotype evolution of SLITRK1, a candidate gene for Gilles de la Tourette syndrome. Am J Med Genet B Neuropsychiatr Genet 147B(4):463–466

    Article  PubMed  CAS  Google Scholar 

  • The Tourette Syndrome Association International Consortium for Genetics (2007) Genome scan for Tourette disorder in affected-sibling-pair and multigenerational families. Am J Hum Genet 80:265–272

    Article  Google Scholar 

  • Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lönnqvist J, Standertskjöld-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Verkerk AJ, Cath DC, van der Linde HC, Both J, Heutink P, Breedveld G, Aulchenko YS, Oostra BA (2006) Genetic and clinical analysis of a large Dutch Gilles de la Tourette family. Mol Psychiatry 11(10):954–964

    Article  PubMed  CAS  Google Scholar 

  • Wallace GL, Eric Schmitt J, Lenroot R, Viding E, Ordaz S, Rosenthal MA, Molloy EA, Clasen LS, Kendler KS, Neale MC, Giedd JN (2006) A pediatric twin study of brain morphometry. J Child Psychol Psychiatry 47(10):987–993

    Article  PubMed  Google Scholar 

  • Yoon U, Fahim C, Perusse D, Evans A (2008). Genetic analysis of cortical thickness in 8-year-old twins. In: The 14th international conference on funtional mapping of the human brain, Melbourne, Australia. NeuroImage, vol 41, p S55

  • Zijdenbos AP, Forghani R, Evans AC (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the subjects who participated in this study. C·F. is a post-doctoral fellow of the Canadian Institutes of Health Research (CIHR), of the CIHR Genes, Mind, Behavior Training Program (M. Meany, PI) and the Jeanne Timmins Costello at the Montreal Neurological Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherine Fahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahim, C., Yoon, U., Sandor, P. et al. Thinning of the Motor–Cingulate–Insular Cortices in Siblings Concordant for Tourette Syndrome. Brain Topogr 22, 176–184 (2009). https://doi.org/10.1007/s10548-009-0105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-009-0105-6

Keywords

Navigation